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Stochastic Linear Programming

@ Two-Stage Stochastic Linear Programs
e Scenario Trees, Lattices, and Serial Independence
e Multi-Stage Stochastic Linear Programs

o Applying Dynamic Programming to Stochastic Linear Programs



@ Two-Stage Stochastic Linear Programs



Sequence of Events

@ First-stage decisions: decisions taken before uncertainty is
revealed

© Second-stage decisions: decisions taken after uncertainty is
revealed

© Sequence of events: x — w — y(w)

Second stage

First stage Uncertainty



Mathematical Formulation

min ¢’ x + E[min g(w)"y(w)]
Ax=0>b

T(w)x + W(w)y(w) = h(w)
x>0,y(w) =0

@ First-stage decisions x € R™, second stage decisions y(w) € R™
@ First-stage parameters: ¢ € R™, b € R™, A € R™*M™

@ Second-stage data: g(w) € R™, h(w) € R™, T(w) € RM*™M,
W(w) € R
@ Fixed recourse if W does not depend on w



Example: Newsboy Problem

Denote
@ x: amount of product produced in period 1
@ y: amount of product sold in period 2
@ C: unit cost of production
@ P: sale price
@ D(w): random demand

Two-stage stochastic formulation of newsboy problem:
min C-x—E[P-s
,min (C-x—E[P-s(w)]
s.t. s(w) < x

s(w) < D(w)

Extensions: salvage value, penalty for unserved demand

What is the trade-off of large/small value of x?



Example: Capacity Expansion Planning

n

m
min 1 (- xi + E[z Ci-Tj-yi(w)])
i= =

n
sty yj(w)=Djw),j=1,....m
i=1

m
Zy,/(w) <x,i=1,...n—1
j=1

@ [;, C;: fixed/variable cost of technology i

@ Dj(w), T;: height/width of load block j

@ yji(w): capacity of / allocated to j

@ Xx;: capacity of i

Note: T; independent of w



Example: Capacity Expansion Planning - Graphical

[llustration

TG, I yGQqLQ(l) :DL2(1)
| 6,.5,(1) = Dr, (1)
el
Tw, I YG,,L.(1) = D, (1)
Ty,
. Y62.1,(2) = D1, (2)
R § v6212(2) = D1 (2)
T
be [ Y61,L5(2) = D1y (2)
ra,
T, ‘ i YG1,04(2) = Dr,(2)
Ty,

Note: T; independent of w



Example: Hydro-Thermal Scheduling

Denote:
@ q;: hydro power
@ p;: thermal power
@ C: marginal cost of thermal power plant
@ D;: demand
@ E: storage limit in the dam
@ Xx;: content of dam at the end of a stage

@ r;: amount of rain during stage t



Hydro-thermal scheduling problem:

min C- p1 + E[C - pz(w)]
p1+q1 > Dy

Xy < Xo+r—

x1 < E

p2(w) + q2(w) > Do

R(w) < X1+ r(w)

pP1, Q1 X1, p2(w), Gz(w) = 0

What is the trade-off?



e Scenario Trees, Lattices, and Serial Independence
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Scenario Trees

A scenario tree is a graphical representation of a Markov process
{&t}tez, where
@ nodes correspond to histories of realizations &y = (¢1,. .., &)

@ edges correspond to transitions from & to &[4
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Scenario Tree Terminology

@ Root corresponds to t = 1

@ Ancestor of a node &, A(¢[y): unique adjacent node which
precedes &;:

Alr) = {&-11 : Epe-11-¢m) € E}

@ Children or descendants of a node, C({}): set of nodes that
are adjacent to {4 and occur at stage t + 1:

C(&) = {411+ s &pe417) € E}
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Scenario Tree Graphical lllustration

Specification of probability space requires:
@ Assigning value ¢ for every node
@ Assigning value P[¢:,.1)[¢[] for every edge
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A lattice is a graphical representation of a Markov process {{} ez,
where

@ nodes correspond to realizations &;

@ edges correspond to transitions from &; to &;+
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Lattice Graphical lllustration

Specification of probability space requires:
@ Assigning value &; for every node
@ Assigning value P[¢;11|&;] for every edge
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Equivalence of Scenario Trees and Lattices

We can
@ unfold lattices into scenario trees (top)

@ fold scenario trees into lattices (bottom)
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Serial Independence

A process satisfies serial independence if, for every stage t, & has a
probability distribution that does not depend on the history of the

process, i.e. one can define a probability measure p;(/) at each stage
t, such that

P&t (w) = i[&pe—17(w)] = pe(F), YEj—1) € Zpp—1), 1 € =t
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Checking for Serial Independence

Values on arcs indicate transition probabilities, values in nodes
indicate realization of &;

Which scenario tree(s) obey(s) serial independence
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Populating Scenario Trees and Lattices with Data

@ For scenario trees, one specifies:
e The value of & at each node
e The transition probability for every edge
@ For lattices, one specifies:
e The value of & at each node (a node generally does not
correspond to a unique history )
e The transition probability for every edge
@ For lattices with stage-wise independence, one specifies:
e The value of & at each node
e The probability of realization of each node of the lattice
(well-defined)
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e Multi-Stage Stochastic Linear Programs
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General Formulation

Extended form of a multistage stochastic linear program:

(MSLP) :
min ¢f x; + E[ca(w) "xa(w) + - - - + cr(w) " xy(w)]
s.t. Wixqs = hy

Ti(w)x1 + Wa(w)Xxe(w) = he(w),w € Q
Ti—1(w)Xt—1(w) + Wi(w)xe(w) = h(w),w € Q

TH,1(w)XH,1(w) + WH(w)XH(w) = hH(w),w e
X1 >0,x¢(w) >0,t=2,...,H
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Probability space (2, 2%, P) with filtration {A} (1, 1y
ct(w) € R™: cost coefficients

hi(w) € R™: right-hand side parameters

Wi(w) € R™M>": coefficients of x;(w)

Ti—1(w) € RM*M-1: coefficients of x;_1(w)

x;(w): set of state and action variables in period ¢

We implicitly enforce non-anticipativity by requiring that x; and
& are adapted to filtration {A}cq1,.. 1y
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Stochastic Programs on Scenario Trees and Lattices

We now consider two specific instantiations of (MSLP):
@ (MSLP-ST): stochastic programs on scenario trees
@ (MSLP-L): stochastic programs on lattices

In these formulations, we will use the following notation:
@ w; € S (interpretation: index in the support =; of random input &;)

@ wiy € §1 x ... x G (interpretation: index in = == x ... X =y,
which is the history of realizations, up to period t)
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Formulation on a Scenario Tree

(MSLP — ST) -

min ¢f x; + E[ca(wp) "Xe(wp) + - -+ + crlwim) T xe(wim)]
s.t. Wixqs = hy

T (wi)x1 + Wa(wpg)Xe(wig)) = h2(wpg), wiz) € St x Sz

Te—1 (wig)Xe—1 (wie—11) + Wilwig)Xe(wig) = hi(wyg), wig € S1x ..o x S

TH—1(wi) XH-1(WiH—11) + Wh(wim)XH(wim) = he(wia),
WiH] € Sy x...x 8y
X1 > O,Xt((.c)[t]) >0,t=2,...,H
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Formulation on Lattice

(MSLP — L) -
min ¢{ i + E[Ca(wr) xe(wpg)) + -+ + Cl(wr) T Xe(wiey)]
s.t. Wix; = by

Ti(w2)Xx1 + Wa(w2)Xe(wpz)) = h2(w2), wig € St x S2

Tr—1(wH)XH-1(wiH)) + Wh(wr)XH(wiH) = ba(wh),
UJ[H]GS1 X ...xX Sy
X1 > O,Xt(wU]) > O,t: 2,...,H
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Comments

@ Compared to (MSLP-ST), & in (MSLP-L) is indexed over w; € S;

@ Problem size of (MSLP-L) doesn’t really change compared to
(MSLP-ST) (x; is still indexed over wys € St x ... x §¢)
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Example: Capacity Expansion - Scenario Tree

P(Ref) = 0.1 P(Ref) = 0.1

Table: Load duration curve for reference and 10x outcome

Duration (hours) Level (MW) Level (MW)
Reference scenario  10x wind scenario
Base load 8760 0-7086 0-3919
Medium load 7000 7086-9004 3919-7329
Peak load 1500 9004-11169 7329-10315
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Example: Capacity Expansion - Technological Options

Technology Fuel cost ($/MWh)

Inv cost ($/MWh)

Coal 25
Gas 80
Nuclear 6.5
0]] 160

DR 1000

16
5
32
2
0
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Example: Capacity Expansion - Notation and Setup

Denote:
@ Vir,,: capacity of technology i constructed in period ¢
® X, totalamount of capacity of technology 7 available in period ¢
® Yt Power allocation from technology 7 to load block j

Sequence of events:

@ Capacity Xi t—1 w1 available at the end of stage t — 1 that can
serve demand in ¢

@ Demand Djt.,, is observed

@ Construct new capacity Vit
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Example: Capacity Expansion - Model

Objective function:

min Ii - vitq

X,V,YZO, -

+ Z Pw[a(Z’ Vizup +ZZC’ Tj- y’/2W[21)
W= i= 1/ 1

+ Z Pl Z/ Vigwg + ZZ Ci-Tj-y I3W[31)
wiz =1 i=1 j=1

Note: first stage involves only investment decision
Supply equals demand (enforced only for t > 1):

n
> Vitwy = Ditwygod € {1,....m} te{2,...,3}
i=1

wi] S {172},w[3] S {1,...,4}
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Example: Capacity Expansion - Model

Investment dynamics:
Xi2wg = Xi11 + Vi2w[2]ai€ {1,...,n=1},wpg € {1,2}
X/3w[3] = Xj21 + Vi3o.)[3]7 ie {1a Y L 1}7(&][3] € {172}

X/3w[3] = Xj22 + Vi3w[3]; i€ {1 yeeey M — 1},(4)[3] € {374}

Technology capacity constraints:

m
ZyijZW[Zl SX,‘“,I'G {17.,,1’]—1},(&)[2] € {1’2}

m
Zyijsw[s] < Xpp1,i € {17,,,n—1},w[3] €{1,2}
j*1

Zylj&um > Xi22ai6 {1,...”— 1},W[3] € {374}

Does this model obey block separability?
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Example: Capacity Expansion - Optimal Solution

Optimal expansion plan:
@ Coal, period 1: 2986 MW
@ Nuclear, period 1: 7329 MW
@ Oil, period 1: 854 MW
@ Period 2: nothing (!)

Why is it optimal to invest only in period 17
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o Applying Dynamic Programming to Stochastic Linear Programs
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Stochastic Control Block Diagram

Feasible
action set System

U = Ut (ajt) dynamics

At(xt) —>|
xtf j > ft(xhut?gt) —> xt+1

.

v

P[4, ug]

o> Ct(xt,ut,ft)

Random
input
distribution

Cost
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Stochastic Programming Block Diagram

Feasible
action set

Tt—1

Wi—1— P[-|wy_1]

At(fﬂt—laft)

Ty = Mt(ﬂft—l, §t)

Cost

ce(we, &)

N

Random
input
distribution

Wi
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Comparison

@ Timing of action
@ Stochastic control: first decide u;, then observe realization of
uncertainty &
@ Stochastic programming: first observe the realization of
uncertainty, &, then decide x;
@ System state
e Stochastic control: x; encodes all information about system state
e Stochastic programming: vector x; and node of the lattice w;
encode all information about system state
@ Feasible action set A;

e Stochastic control: A; depends only on x;
e Stochastic programming: A; depends on x;_1 and &;
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Block Separability

Feasible action set in stage t:

Te—1(we)Xi—1(wp) + Wiwi)Xe(wpg) = hi(wi), wig € S1x ... x S

Block separability occurs when these constraints can be written in
the following form:

T[Xi(1 (wt)Xt,1(UJ[t,1]) + thx(wt)xt(w[,]) = hfx(w;),w[t] S S1 X ... X S;
T[X,u1 (w;)xtq(w[t,ﬂ) + W;(“(w,)u,(wt) = hf“(wt),w[,] €S x...x&

Benefit: decision variables u; do not need to be propagated forward
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Application of Dynamic Programming in MSLP

Q-function in final period:

Qu(XH-1,¢H) = T’QLH cr(wr) Xy
st Ty_1(wr)XH—1 + Wr(wh) Xy = hr(why)
xy >0

Value function in final period:

Vi(XH-1,wH-1) = E¢, [Qu(XH-1, {n) |wr—1]
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Application of Dynamic Programming in MSLP

Proceeding recursively, Q-function in stage t:

Qi(Xi—1,&t) = "}(ltn Ct(wt)TXt + Vi1 (Xe, wi)
s.t. Tt,1(wt)Xt71 + Wf(w;)xt = ht(wt)

Xt > 0
Value function in stage t:

Vi(xi—1,wi—1) = Eg [Qr(Xe—1, &) wr—1]
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Application of Dynamic Programming to MSLP

Proceed backwards until:

min ¢f x; + Va(xq)
s.t. Wixy = by

X120
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Notational Convention

@ Note the different notation for node of the lattice (w;) and
realization of uncertainty (&;)

@ The notation Vi(x;_1,w;—1) emphasizes how value functions are
stored by SDDP

@ The notation Q:(x;_1, &;) is the conventional notation used in
stochastic programming, but Q-functions are not explicitly stored
in SDDP

@ Note the difference in the definition of the Q function

e Stochastic control: function of state x, action u
e Stochastic programming: function of state x, random input &;
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Example: Hydrothermal Scheduling

Ef%db =
- \ﬁg
- 5 2 e

h;;| -
o mal N
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Example: Hydrothermal Scheduling

Consider the following hydro-thermal system:

@ 3 periods

@ Demand in each period: 1000 MW

@ Marginal cost of thermal generators: 25 $/MWh

@ Max production of thermal generators: 500 MW
@ Marginal cost of lost load: 1000 $/MWh
°

Rainfall: independent identically distributed, uniformly on
[0,1000] MW, denote density functionas f: R — R
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Example: Hydrothermal Scheduling

Denote
@ p: thermal production
@ q: hydro production
@ /: unserved demand

@ Xxo: stored hydro energy at beginning of period 2

Qs(x2, R3) = min1000-/+25-p
st. I+ p+qg>1000
p <500
g<xo+ A3
l,p,q>0
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Q function of period 3:

0,X2 + Rg(w) > 1000
QS(XQ, Rg) = 25 (1000 — (X2 + Rs(w))),SOO < Xo + R3(w) < 1000
500 - 25 + 1000 - (500 — (Xa + R3(w))), 0 < Xp + Ra(w) < 500

Value function of period 3:

V3(x2) = Eg,[Qs(x2, R3)]
= ]P[Hg(w) > 1000 — X2] -0

1000—xo
+/ (25 - (1000 — r — xo))f(r)dr
r=500—x,

500—Xxp
+/ (500 - 25 + 1000 - (500 — r — x2))f(r)dr
r=0

0, Xo > 1000
= 12500—25-x2+0.0125-x§, 500 < xo < 1000
134375 - 5125 %+ 0.5-x3, 0 < xp < 500
Note:
@ V3 is convex

@ Vj is not a piecewise linear function of xo
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Q, can be computed as:

Qx(x1, R2) = min1000 - / + p + V3(x2)
st. /+p+q>1000,p <500

Xo = X1 — q+ Rao(w)

l,p,q,x2 > 0

Qo yields V,, V. yields @, . ..
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