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Two-Stage Stochastic Linear Programs

min z = cT x + Eω[min q(ω)T y(ω)]

s.t. Ax = b

T (ω)x + W (ω)y(ω) = h(ω)

x ≥ 0, y(ω) ≥ 0

First stage decisions x ∈ Rn1 , c ∈ Rn1 , b ∈ Rm1 , A ∈ Rm1×n1

For a given realization ω, second-stage data are q(ω) ∈ Rn2 ,
h(ω) ∈ Rm2 , T (ω) ∈ Rm2×n1 , W (ω) ∈ Rm2×n2

All random variables of the problem are assembled in a single
random vector
ξT (ω) = (q(ω)T ,h(ω)T ,T1·(ω), . . . ,Tm2·(ω),W1·(ω), . . . ,Wm2·(ω))
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Motivation

Is it worth solving a stochastic program?

How well could we do if we knew the future?

How well could we do with a simpler model (e.g. expected value
problem)?
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Notation

z(x , ξ) = cT x + Q(x , ω) + δ(x |K1)

Q(x , ξ) = min
y
{q(ω)T y |W (ω)y = h(ω)− T (ω)x}

What is the interpretation of z(x , ξ)?

Define K1 = {x |Ax = b, x ≥ 0} as the set of feasible first-stage
decisions

Define K2(ω) = {x |∃y : W (ω)y = h(ω)− T (ω)x} as the set of
first-stage decisions that have a feasible reaction in the second
stage for ω ∈ Ω

It can be that z(x , ξ) = +∞ (if x /∈ K1 ∩ K2(ω))

It can be that z(x , ξ) = −∞ (unbounded below)
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Wait-and-See, Here-and-Now

The wait-and-see value is the expected value of reacting with
perfect foresight x?(ξ) to ξ:

WS = E[min
x

z(x , ξ)]

E[z(x?(ξ), ξ)]

The here-and-now value is the expected value of the recourse
problem:

SP = min
x

E[z(x , ξ)]

We have swapped min and E. What’s the difference?

Which one is more difficult to compute?
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Expected Value of Perfect Information (EVPI)

The expected value of perfect information is the difference
between the two solutions:

EVPI = SP −WS

Interpretation: value of a perfect forecast for the future
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Example: Capacity Expansion Planning

Technology Fuel cost ($/MWh) Inv cost ($/MWh)
Coal 25 16
Gas 80 5

Nuclear 6.5 32
Oil 160 2
DR 1000 0

Table: Probability of (i) reference load duration curve: 10%, (ii) 10x wind
scenario: 90%.

Duration (hours) Level (MW) Level (MW)
Reference scenario 10x wind scenario

Base load 8760 0-7086 0-3919
Medium load 7000 7086-9004 3919-7329

Peak load 1500 9004-11169 7329-10315
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Technology SP solution Reference 10x wind EV solution
Coal 5085 1918 3410 4235
Gas 1311 2165 2986 3261

Nuclear 3919 7086 3919 2905
Oil 854 0 0 0

SP = 340316 $/h

z(x?(”Ref ”), ”Ref ”) = 382288 $/h

z(x?(”10x”), ”10x”) = 329383 $/h

WS = 334673 $/h

EVPI = 5643 $/h = 1.7% · SP

Note: wait-and-see model never chooses oil
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Expected Value Problem

Expected (or mean) value problem:

EV = min
x

z(x , ξ̄), ξ̄ = E[ξ]

Expected value solution x?(ξ̄): optimal solution of expected value
problem
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Value of the Stochastic Solution

The expected value of using the EV solution measures the
performance of x?(ξ̄) (optimal second-stage reactions given x?(ξ̄)):

EEV = E[z(x?(ξ̄), ξ)]

The value of the stochastic solution is

VSS = EEV − SP

Which one is easier to compute: WS, SP, or EEV? Which one is
harder?

What can we say about VSS if x?(ξ) is independent of ξ?
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Example: Capacity Expansion Planning

Table: Optimal investment and fixed cost for the stochastic program and the
expected value problem.

SP investment EV investment SP fixed cost EV fixed cost
(MW) (MW) ($/h) ($/h)

Coal 5085 3261 81360 52176
Gas 1311 2905 6,555 14525

Nuclear 3919 4235 125408 135520
Oil 854 0 1708 0

Total 11169 10401 215031 202221
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Example: Capacity Expansion Planning

Table: Variable cost for the SP and EV models.

SP var cost EV var cost
($/h) ($/h)

Block 1 25473 25473
Block 2 64858 60070
Block 3 4854 4854
Block 4 9799 29209
Block 5 17960 17959
Block 6 2340 13268

Total 125285 150834

EEV = 12739 $/h

Investment cost of EV solution is lower than SP solution

EV investment cannot serve peak demand in "Ref" scenario
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Crystal Ball

For every ξ, we have z(x?(ξ), ξ) ≤ z(x?, ξ) where x? is the
optimal solution to the stochastic program

Taking expectations on both sides, WS ≤ SP

Interpretation: we can do better if we have a crystal ball (i.e. we know
the future in advance)
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Lazy Solution

x? is the optimal solution of

min
x

E[z(x , ξ)]

x?(ξ̄) is a solution (not necessarily optimal), therefore

min
x

E[z(x , ξ)] = SP ≤ EEV = E[z(x?(ξ̄), ξ)]

Interpretation: we do worse when we are lazy (i.e. when we do not
account for uncertainty explicitly)

Would anything change if some of the x , y were integer?
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Jensen’s Inequality

Suppose f is convex and ξ is a random variable, then f (E[ξ]) ≤ E[f (ξ)]
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Lazy and a Liar!

Suppose c,W ,T are independent of ω (i.e. , ξ = h): then EV ≤WS

We will show that z(x ,h) is jointly convex in (x ,h)

We know that f (ξ) = minx z(x , ξ) is convex in ξ

From Jensen’s inequality, we have E[f (ξ)] ≥ f (E[ξ])

Interpretation: EV (the lazy solution) is a biased estimate of expected
cost. Is it optimistic, or pessimistic?
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Proof that z(x ,h) is convex in (x ,h)

Consider x1, x2 and λ ∈ (0,1). Without loss of generality, assume
Ax1 = b, Ax2 = b, x1, x2 ≥ 0.

z(xi ,hi ) = cT xi + qT yi , where
yi = min{qT y |Wy = hi − Txi , y ≥ 0}, i = {1,2}

z(λx1 + (1− λ)x2, λh1 + (1− λ)h2) = cT (λx1 + (1− λ)x2) + qT yλ,
where
yλ = min{qT y |Wy = λh1 + (1−λ)h2−T (λx1 + (1−λ)x2), y ≥ 0}

λy1 + (1− λ)y2 is a feasible solution for
min{qT y |Wy = λh1 + (1− λ)h2 − T (λx1 + (1− λ)x2), y ≥ 0}.
Therefore, we have qT yλ ≤ λqT y1 + (1− λ)qT y2.

It follows that
z(λx1 + (1− λ)x2, λh1 + (1− λ)h2) ≤ λz(x1,h1) + (1− λ)z(x2,h2)
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Example: Capacity Expansion Planning

Does the cap ex problem satisfy the assumptions of slide 20?

For the capacity expansion problem:

WS = EV = 334674 $/h

Exercise: show that EV = WS holds in general for the two-stage
stochastic capacity expansion problem with demand uncertainty
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Counter-Example: EV > WS

Consider the following problem:

min
x≥0

2x + Eξ[ξ · y ]

s.t. y ≥ 1− x

y ≥ 0

where P[ξ = 1] = 3/4, P[ξ = 3] = 1/4

Does this problem satisfy the assumptions of slide 20?
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Optimal second-stage decision: y = 1− x if 1− x ≥ 0, y = 0
otherwise

Trade-off: by increasing x we can push y to lower values, but
incur certain cost 2x

For ξ̄ = 3
4 + 3

4 = 3
2 we have {min 2x + 3

2 y |y ≥ 1− x , x ≥ 0, y ≥ 0}

Optimal solution: x?(ξ̄) = 0, y = 1 with EV = 3
2

To compute WS, note that for ξ = 1 the optimal first-stage
decision is x = 0, with cost of 1, while for ξ = 3 the optimal
first-stage decision is x = 1, with cost of 2:
WS = 3

4 + 1
4 · 2 = 5

4 < EV
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Summary

We have established that

VSS ≥ 0, EVPI ≥ 0

VSS ≤ EEV − EV , EVPI ≤ EEV − EV

If EEV − EV = 0 then VSS = 0, EVPI = 0 (for example, if x?(ξ)

independent of ξ - this is rare)
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Computing EV , SP, WS, EEV

Computing EV : single linear program

Computing two-stage SP: (multi-cut) L-shaped method

Computing multi-stage SP: nested decomposition, SDDP

EEV and WS: simulation

Notes:

Generalization of WS to multiple stages is fairly obvious

Generalization of EEV to multiple stages is not obvious

Consider discretization of n random variables at d values each,
exact computation of EEV and WS requires solving dn linear
programs
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Estimating WS and EEV

Estimation of WS and EEV through sample mean approximation:

For i = 1, . . . ,K
Sample ξi = ξ(ωi )

Compute x?(ξ̄)

Compute WSi = z(x?(ξi ), ξi ) and EEVi = cT x?(ξ̄) + Q(x?(ξ̄), ξi )

Estimate W̄S = 1
K

∑K
i=1 WSi and ¯EEV = 1

K

∑K
i=1 EEVi
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Central Limit Theorem

Suppose ξ(ω) is continuous, does this complicate the computation of
EV, SP, EEV and WS?

Central limit theorem: Suppose {X1,X2, ...} is a sequence of i.i.d.
random variables with E[Xi ] = µ and Var [Xi ] = σ2 <∞. Then as n
approaches infinity,

√
n(Sn − µ) converge in distribution to a normal

N(0, σ2):

√
n
((

1
n

n∑
i=1

Xi

)
− µ

)
d−→ N(0, σ2).

Can we use the CLT? What would the Xi be in our case?
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Example: Slow Convergence of Sample Average
Approximation

The cost C of operating a facility is

C(N) = 1 under normal operations, f (N) = 0.9

C(E) = 100 under emergency operations, f (E) = 0.1

µ = 0.1 · 100 + 0.9 · 1 = 10.9

σ =
√

0.9 · (1− 10.9)2 + 0.1 · (100− 10.9)2 = 29.7
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Rare outcome (1 out of 10 samples) influences expected value
calculation since it contributes by 0.1·100

10.9 = 91.7% to expected
value

From central limit theorem, in order to get estimate of E[C] to be
within 5% with 95.4% confidence, we need 2 σ√

n = 0.05µ, from
which n = 11879!
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Figure: A sample of the evolution of the moving average 1
n

∑n
i=1 C(ωi ) where

ωi denotes the outcome of sample i .

Note sensitivity of sample average to emergency outcome
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Importance Sampling

Suppose we wish to estimate E[C(ω)], where ω is distributed
according to f (ω)

Sample average pulls samples ωi according to distribution f (ω)

and estimates E[C(ω)] with
∑N

i=1
1
N C(ωi )

Importance sampling pulls samples ωi according to distribution
g(ω) = f (ω)·C(ω)

E[C] and estimates E[C(ω)] with
∑N

i=1
1
N

f (ωi )·C(ωi )
g(ωi )
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Motivation of Importance Sampling

Note that E[C(ω)] =
∫

Ω
C(ω) · f (ω)dω =

∫
Ω

C(ω)·f (ω)
g(ω) g(ω)dω

The random variable C(ω)·f (ω)
g(ω) , which is distributed according to

g(ω), also has expectation E[C]

Which g(ω) minimizes the variance of this new random variable?

g(ω) =
C(ω) · f (ω)

E[C]

Any sample evaluates to E[C]!

We cheated: g(ω) requires knowledge of E[C], which is what we
are estimating

But we learned something: pull samples according to
contribution to expected value, C(ω)·f (ω)

E[C] . Even if we do not know
E[C], we can approximate it.
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Back to the Example

Problem: rare ‘bad’ outcome had the greatest influence on
expected value

Remedy: redefine distribution so that we observe ‘bad’ outcome
earlier, then adjust our expected value calculations in order to
unbias result

g(ω1) =
f (ω1) · C(ω1)

E[C]
=

0.9 · 1
10.9

=
0.9
10.9

g(ω2) =
f (ω2) · C(ω2)

E[C]
=

0.1 · 100
10.9

=
10

10.9

Estimates from sampling ω1, ω2 are constant and equal to E[C]:

C(ω1) · f (ω1)

g(ω1)
= 1 · 0.9

0.9
10.9

= 10.9

C(ω2) · f (ω2)

g(ω2)
= 100 · 0.1

10
10.9

= 10.9
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