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Two-Stage Stochastic Linear Programs

minz = ¢"x + E,[min g(w) " y(w)]
st. Ax=>b

T(w)x + W(w)y(w) = h(w)
x>0,y(w) >0

@ First stage decisions x e R™, c e R, b e R™, Ae R™>™

@ For a given realization w, second-stage data are g(w) € R™,
h(w) € R™, T(w) € RM*M  W(w) € RMex"m

@ All random variables of the problem are assembled in a single

random vector
§TM(w) = (q(w)7, h(w)T, T1.(w), ..., T, (W), Wi (w), . ..., Win,.(w))



Is it worth solving a stochastic program?

@ How well could we do if we knew the future?

@ How well could we do with a simpler model (e.g. expected value
problem)?
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z(x,€) = c"x + Q(x,w) + 5(x|Ky)
Q(x.€) = min{q(w) y|W(w)y = h(w) - T(w)x}

@ What is the interpretation of z(x, £)?

@ Define K1 = {x|Ax = b, x > 0} as the set of feasible first-stage
decisions

@ Define Kz(w) = {x|3y : W(w)y = h(w) — T(w)x} as the set of
first-stage decisions that have a feasible reaction in the second
stage forw € Q

@ It can be that z(x, &) = +oo (if x ¢ K1 N Kz(w))

@ It can be that z(x, ¢) = —oo (unbounded below)



Wait-and-See, Here-and-Now

@ The wait-and-see value is the expected value of reacting with
perfect foresight x*(£) to &:
WS = JE[mXin z(x,8)]
E[z(x*(£),¢)]
@ The here-and-now value is the expected value of the recourse

problem:
SP = mXin E[z(x, )]

@ We have swapped min and E. What'’s the difference?

@ Which one is more difficult to compute?



Expected Value of Perfect Information (EVPI)

The expected value of perfect information is the difference
between the two solutions:

EVPI = SP - WS

Interpretation: value of a perfect forecast for the future



Example: Capacity Expansion Planning

Technology Fuel cost ($/MWh) Inv cost ($/MWh)
Coal 25 16
Gas 80 5
Nuclear 6.5 32
Qil 160 2
DR 1000 0

Table: Probability of (i) reference load duration curve: 10%, (ii) 10x wind
scenario: 90%.

Duration (hours) Level (MW) Level (MW)
Reference scenario  10x wind scenario
Base load 8760 0-7086 0-3919
Medium load 7000 7086-9004 3919-7329
Peak load 1500 9004-11169 7329-10315




Technology | SP solution | Reference 10x wind | EV solution
Coal 5085 1918 3410 4235
Gas 1311 2165 2986 3261

Nuclear 3919 7086 3919 2905
0]] 854 0 0 0

SP = 340316 $/h

z(x*(" Ref"),” Ref") = 382288 $/h
z(x*("10x"),"10x") = 329383 $/h

WS = 334673 $/h
EVPI = 5643 $/h =1.7% - SP

Note: wait-and-see model never chooses oil
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Expected Value Problem

Expected (or mean) value problem:

EV = minz(x,£), € = E[]

Expected value solution x*(¢): optimal solution of expected value
problem
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Value of the Stochastic Solution

The expected value of using the EV solution measures the
performance of x*(¢) (optimal second-stage reactions given x*(£)):

EEV = E[z(x*(£),¢)]
The value of the stochastic solution is

VSS = EEV — SP

@ Which one is easier to compute: WS, SP, or EEV? Which one is
harder?

@ What can we say about VSS if x*(¢) is independent of £?
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Example: Capacity Expansion Planning

Table: Optimal investment and fixed cost for the stochastic program and the
expected value problem.

SP investment EV investment  SP fixed cost EV fixed cost
(MW) (MW) ($/h) ($/h)
Coal 5085 3261 81360 52176
Gas 1311 2905 6,555 14525
Nuclear 3919 4235 125408 135520
Qil 854 0 1708 0
Total 11169 10401 215031 202221
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Example: Capacity Expansion Planning

Table: Variable cost for the SP and EV models.

SPvarcost EV var cost
($/h) ($/h)
Block 1 25473 25473
Block 2 64858 60070
Block 3 4854 4854
Block 4 9799 29209
Block 5 17960 17959
Block 6 2340 13268
Total 125285 150834

@ EEV = 12739 $/h
@ Investment cost of EV solution is lower than SP solution

@ EV investment cannot serve peak demand in "Ref" scenario
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Crystal Ball

@ For every &, we have z(x*(¢), &) < z(x*, &) where x* is the
optimal solution to the stochastic program

@ Taking expectations on both sides, WS < SP

Interpretation: we can do better if we have a crystal ball (i.e. we know
the future in advance)
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Lazy Solution

@ x* is the optimal solution of
min E[z(x, )]
X
@ x*(€) is a solution (not necessarily optimal), therefore

minE[z(x, §)] = SP < EEV = E[z(x*(£), €]

Interpretation: we do worse when we are lazy (i.e. when we do not
account for uncertainty explicitly)

Would anything change if some of the x, y were integer?
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Jensen'’s Inequality

Suppose f is convex and ¢ is a random variable, then f(E[¢]) < E[f(£)]

A

f(&) [ i
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Lazy and a Liar!

Suppose ¢, W, T are independent of w (i.e. , £ = h): then EV < WS

@ We will show that z(x, h) is jointly convex in (x, h)
@ We know that f(£) = min, z(x, £) is convex in &
@ From Jensen’s inequality, we have E[f(¢)] > f(E[¢])

Interpretation: EV (the lazy solution) is a biased estimate of expected
cost. Is it optimistic, or pessimistic?
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Proof that z(x, h) is convex in (x, h

@ Consider x1, X2 and A € (0, 1). Without loss of generality, assume
Axy = b, Axo = b, X1, x> > 0.
@ z(x;, h)) = c"x; + q'y;, where
yi=min{q"y|Wy = hi — Tx;,y > 0},i = {1,2}
@ z(Axy + (1 =X)xo, Ay 4+ (1 =N h2) = ¢ (Oxy + (1 = A\)x2) + g7 v,
where
yy =min{q y|Wy = Mhy + (1 = XN)ha — T(Axy + (1 = A\)xe), y > 0}
@ \y1 + (1 — \)y2 is a feasible solution for
min{q"y|Wy = Ahy + (1 — Nha — T(Axy + (1 — \)x2),y > 0.
Therefore, we have q7yx < A\q7yy + (1 = \)q" yo.
@ It follows that
zZ(Ax1+ (1= X)x2, Ahy + (1 = N)h2) < Az(x1, hy) + (1 — A)z(x2, h2)
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Example: Capacity Expansion Planning

Does the cap ex problem satisfy the assumptions of slide 207?

For the capacity expansion problem:

WS = EV = 334674 $/h

Exercise: show that EV = WS holds in general for the two-stage
stochastic capacity expansion problem with demand uncertainty
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Counter-Example: EV > WS

Consider the following problem:

min2x + Ee[¢ - y]
st.y>1-—x
y=0

where P[¢ = 1] =3/4,P[¢ =3] =1/4

Does this problem satisfy the assumptions of slide 20?
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@ Optimal second-stage decision: y =1 —xif1—x>0,y=0
otherwise

@ Trade-off: by increasing x we can push y to lower values, but
incur certain cost 2x

@ Foré=2+2 =23 wehave {min2x+3yly >1-x,x >0,y >0}
@ Optimal solution: x*(£) =0, y = 1 with EV = 3

@ To compute WS, note that for ¢ = 1 the optimal first-stage
decision is x = 0, with cost of 1, while for £ = 3 the optimal
first-stage decision is x = 1, with cost of 2:
WS=3%+;2=5<EV
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We have established that
@ VSS>0,EVPI>0
@ VSS<EEV - EV,EVPI<EEV — EV

e If EEV — EV = 0then VSS = 0, EVPI = 0 (for example, if x*(&)
independent of ¢ - this is rare)

EVPI VSS
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Computing EV, SP, WS, EEV

@ Computing EV: single linear program

@ Computing two-stage SP: (multi-cut) L-shaped method

@ Computing multi-stage SP: nested decomposition, SDDP
@ EEV and WS: simulation

Notes:
@ Generalization of WS to multiple stages is fairly obvious
@ Generalization of EEV to multiple stages is not obvious

@ Consider discretization of n random variables at d values each,
exact computation of EEV and WS requires solving d” linear
programs
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Estimating WS and EEV

Estimation of WS and EEV through sample mean approximation:
@ Fori=1,....K
e Sample & = &(wi)
e Compute x*(€)
e Compute WS; = z(x*(&),&) and EEV; = ¢"x*(€) + Q(x*(€), &)

e Estimate WS = 1 YK, WS, and EEV = L YK, EEV,
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Central Limit Theorem

Suppose &(w) is continuous, does this complicate the computation of
EV, SP, EEV and WS?

Central limit theorem: Suppose { X1, Xz, ...} is a sequence of i.i.d.
random variables with E[Xj] = 1z and Var[X]] = 0% < co. Then as n
approaches infinity, \/n(S, — 1) converge in distribution to a normal
N(0, 02):

ﬁ((li‘x) —u> 2 N(O, 02).

Can we use the CLT? What would the X; be in our case?
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Example: Slow Convergence of Sample Average

Approximation

The cost C of operating a facility is
@ C(N) =1 under normal operations, f(N) = 0.9
@ C(E) =100 under emergency operations, f(E) = 0.1

4=0.1-100+0.9-1=10.9
o =1/0.9- (1~ 10.9)2 +0.1- (100 — 10.9)2 = 20.7
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@ Rare outcome (1 out of 10 samples) influences expected value
calculation since it contributes by 2:199 = 91.7% to expected
value

@ From central limit theorem, in order to get estimate of E[C] to be
within 5% with 95.4% confidence, we need 2\% = 0.05u, from

which n = 11879!
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Moving Average

0 100 200 300 400 500
Sample number

Figure: A sample of the evolution of the moving average 2 "7 | C(w;) where
w; denotes the outcome of sample i.

Note sensitivity of sample average to emergency outcome
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Importance Sampling

Suppose we wish to estimate E[C(w)], where w is distributed
according to f(w)

@ Sample average pulls samples wj according to distribution f(w)
and estimates E[C(w)] with Z, 1 v C(wi)

@ Importance sampling pulls samples w; according to distribution

9(w) = 10E) and estimates E[C(w)] with Y7, 5 {056
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Motivation of Importance Sampling

Note that E[C(w)] = [ C(w) - f(w)dw = [ CM ) g(w)dw

@ The random variable ‘;@“’), which is distributed according to
g(w), also has expectation E[C]

@ Which g(w) minimizes the variance of this new random variable?
_ Cw) - f(w)
U R
Any sample evaluates to E[C]!

@ We cheated: g(w) requires knowledge of E[C], which is what we
are estimating

@ But we learned something: pull samples according to

contribution to expected value, E%é]w) Even if we do not know

E[C], we can approximate it.
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Back to the Example

@ Problem: rare ‘bad’ outcome had the greatest influence on
expected value
@ Remedy: redefine distribution so that we observe ‘bad’ outcome
earlier, then adjust our expected value calculations in order to
unbias result
f(W1) . C(w1) - 09-1 - 0.9

9@)=""Fr  ~ 708 108
 Hws) Clwe) 0.1-100 10
9w2) = =—Frer = “q09 109

Estimates from sampling w1, w» are constant and equal to E[C]:

fw) . 09
c — 1.5 =109
) 9(wr) Ox;
Clwn)- 122 _ 400 81 _ 40
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