Nested Decomposition

Operations Research

Anthony Papavasiliou

Contents

- Backward Solution of Multistage Stochastic Linear Programs
- Dynamic Programming on Multi-Stage Scenario Trees
- 3 Nested L-Shaped Decomposition Subproblem
- The Nested L-Shaped Method
- 5 Example

Table of Contents

- Backward Solution of Multistage Stochastic Linear Programs
- Dynamic Programming on Multi-Stage Scenario Trees
- Nested L-Shaped Decomposition Subproblem
- The Nested L-Shaped Method
- Example

Scenario Tree

Lattices

Scenario Tree and Lattice Notation

- Dashed line marks the set Ξ_t
- $\bullet \ \Xi_{[t]} = \Xi_1 \times \ldots \times \Xi_t$
- Each node $\xi_{[t]} \in N$ is associated with a history of realizations of the stochastic input, $\xi_{[t]}$, and a probability of realization
- Each edge $(\xi_{[t_1]}, \xi_{[t_2]}) \in E$ is associated with a non-zero transition probability $\mathbb{P}[\xi_{[t_2]}|\xi_{[t_1]}], t_2 > t_1$
- In the following, $c_{t,\omega}$ is used interchangeably for random variables, random vectors, and random matrices

Multi-Stage Stochastic Linear Programming on a Lattice

$$\begin{aligned} &\min c_1^T x_1 + \mathbb{E}[c_2(\omega_2)^T x_2(\omega_{[2]}) + \dots + c_H(\omega_H)^T x_H(\omega_{[H]})] \\ &\text{s.t. } W_1 x_1 = h_1 \\ &T_1(\omega_2) x_1 + W_2(\omega_2) x_2(\omega_{[2]}) = h_2(\omega_2), \omega_{[2]} \in \Xi_{[2]} \\ &\vdots \\ &T_{t-1}(\omega_t) x_{t-1}(\omega_{[t-1]}) + W_t(\omega_t) x_t(\omega_{[t]}) = h_t(\omega_t), \omega_{[t]} \in \Xi_{[t]} \\ &\vdots \\ &T_{H-1}(\omega_H) x_{H-1}(\omega_{[H-1]}) + W_H(\omega_H) x_H(\omega_{[H]}) = h_H(\omega_H), \omega_{[H]} \in \Xi_{[H]} \\ &x_1 \geq 0, x_t(\omega_{[t]}) \geq 0, t = 2, \dots, H \end{aligned}$$

Multistage Stochastic Linear Programming

Application of Dynamic Programming to Multi-Stage Stochastic Linear Programming

Step 1-a: Compute Q_H

$$Q_{H}(x_{H-1}, \xi_{H}) = \min_{x_{H}} c_{H}(\omega_{H})^{T} x_{H}$$
s.t.
$$T_{H-1}(\omega_{H}) x_{H-1} + W_{H}(\omega_{H}) x_{H} = h_{H}(\omega_{H})$$

$$x_{H} \geq 0$$

Step 1-b: Compute V_H

$$V_H(x_{H-1}, \omega_{H-1}) = \mathbb{E}_{\xi_H}[Q_H(x_{H-1}, \xi_H)|\omega_{H-1}]$$

Recursive step a: Compute Q_t:

$$Q_{t}(x_{t-1}, \xi_{t}) = \min_{x_{t}} c_{t}(\omega_{t})^{T} x_{t} + V_{t+1}(x_{t}, \omega_{t})$$
s.t. $T_{t-1}(\omega_{t}) x_{t-1} + W_{t}(\omega_{t}) x_{t} = h_{t}(\omega_{t})$
 $x_{t} \geq 0$

Recursive step b: Compute V_t :

$$V_t(x_{t-1}, \omega_{t-1}) = \mathbb{E}_{\xi_t}[Q_t(x_{t-1}, \xi_t) | \omega_{t-1}]. \tag{1}$$

Final step: Solve for x_1 :

min
$$c_1^T x_1 + V_2(x_1)$$

s.t. $W_1 x_1 = h_1$
 $x_1 \ge 0$

Table of Contents

- Backward Solution of Multistage Stochastic Linear Programs
- Dynamic Programming on Multi-Stage Scenario Trees
- Nested L-Shaped Decomposition Subproblem
- The Nested L-Shaped Method
- Example

Value Functions on a Lattice

Notation:

- V_{t+1,k}: value function of stage t + 1, given realization k in stage t
- Circles: realizations of uncertainty
- Boxes: decisions
- p_t(j|i): transition probability from node i of stage t − 1 to node j of stage t

Serial Independence

Serial independence: distribution of ξ_t is independent of the history of realizations $\xi_{[t-1]}$ for all stages t:

$$\mathbb{P}[\xi_t = i | \xi_{[t-1]}] = p_t(i), \forall \xi_{[t-1]} \in \Xi_{[t-1]}, i \in \Xi_t, t = 2, \dots, H.$$

Which trees satisfy serial independence?

Implications of Serial Independence

Serial independence ⇒

- No transition probabilities, only node probabilities
- Value functions $V_{t+1}(x_t)$, instead of $V_{t+1,k}(x_t)$

Intuition: future is identical regardless of $\xi_t \Rightarrow$ future cost independent of ξ_t

Structure of Value Function

Consider a multi-stage stochastic linear program defined on a lattice, and denote Ξ_t as the set of possible realizations in stage t. If Ξ_t is finite for all t then

- $V_{t+1,\omega_t}(x_t)$ and $Q_{t+1}(x_t,\xi_{t+1})$ are piecewise linear (pwl) convex
- dom V_{t+1,ω_t} and dom Q_{t+1} are polyhedral

Proof is by induction, excellent activity for Saturday night

Table of Contents

- Backward Solution of Multistage Stochastic Linear Programs
- 2 Dynamic Programming on Multi-Stage Scenario Trees
- 3 Nested L-Shaped Decomposition Subproblem
- The Nested L-Shaped Method
- Example

Scenario Tree Model of Multi-Stage Stochastic Program

Goal: know what to do in the root node: t = 1, k = 1

Building Block

We know how to solve a 2-stage stochastic program

Algorithms

- L-shaped method
- Multi-cut L-shaped method

Breaking Down Multi-Stage to 2-Stage

First index denotes time, second index denotes scenario

- Cost-to-go at t = 2, k = 1: piecewise linear function of $x_{2,1}$
- Cost-to-go at t = 2, k = 2: piecewise linear function of $x_{2,2}$
- Problem at t = 1, k = 1 has identical structure to 2-stage stochastic program

Idea of Nested Decomposition

- Each box corresponds to a linear program (why?)
- Nested decomposition: repeated application of the L-shaped method
- Variants depending on how we traverse the scenario tree

Nested L-Shaped Decomposition Subproblem (NLDS)

Building block: NLDS(t, k): problem at stage t, scenario k

- A(t, k): ancestor of outcome k in period t
- D(t, k): descendants of outcome k in period t

Example

- Node: (t = 1, k = 1)
- Direction: forward
- Output: *x*_{1,1}

Example

- Nodes: $(t = 2, k), k \in \{1, 2\}$
- Direction: forward
- Output: $x_{2,k}$, $k \in \{1,2\}$

Example |

- Nodes: $(t = 3, k), k \in \{1, 2, 3, 4\}$
- Direction: backward
- Output: $(\pi_{3,k}, \rho_{3,k}, \sigma_{3,k}), k \in \{1, 2, 3, 4\}$

Example

- Nodes: $(t = 2, k), k \in \{1, 2\}$
- Direction: backward
- Output: $(\pi_{2,k}, \rho_{2,k}, \sigma_{2,k}), k \in \{1, 2\}$

Example: Newsboy Problem

Denote:

- C: unit cost of newspapers
- P: sales price of newspapers
- D_{ω} : random demand
- x: amount of newspapers procured (first stage)
- s: amount of papers sold (second stage)

Write out *NLDS* for stage 1 and 2

First stage:

$$NLDS(1) : \min_{x} C \cdot x$$

s.t. $x \ge 0$

Second stage:

$$NLDS(2, k) : \min_{s} -P \cdot s$$

s.t. $s \le D_k$
 $s \le x$
 $s \ge 0$

Example: Hydrothermal Scheduling

Denote

- C: marginal cost of thermal units
- E: reservoir capacity of hydroelectric dam
- $R_{t,k}$: rainfall (random)
- D_t: power demand
- x: hydro power stored in the dam
- q: hydro power production
- p: thermal production

Write out *NLDS* for stage *t*

NLDS for stage *t* and outcome *k*:

$$NLDS(t, k) : \min_{x,q,p} C \cdot p$$

s.t. $x \leq E$
 $x \leq x_{t-1} + R_{t,k} - q$
 $p + q \geq D_t$
 $x, q, p \geq 0$

Table of Contents

- Backward Solution of Multistage Stochastic Linear Programs
- Dynamic Programming on Multi-Stage Scenario Trees
- Nested L-Shaped Decomposition Subproblem
- The Nested L-Shaped Method
- 5 Example

The Nested L-Shaped Decomposition Subproblem

For each stage t = 1, ..., H - 1, scenario $k = 1, ..., |\Xi_t|$

NLDS
$$(t,k)$$
: $\min_{x,\theta} (c_{t,k})^T x + \theta$
 (π) : $W_{t,k} x = h_{t,k} - T_{t-1,k} x_{t-1,A(t,k)}$
 (ρ_j) : $E_{t,k,j} x + \theta \ge e_{t,k,j}, j = 1, \dots, r_{t,k}$ (2)
 (σ_j) : $D_{t,k,j} x \ge d_{t,k,j}, j = 1, \dots, s_{t,k}$ (3)
 $x \ge 0$

- Ξ_t : distinct realizations of ξ_t
- A(t, k): ancestor of realization k at stage t
- $x_{t-1,A(t,k)}$: current solution from A(t,k)
- Constraints (3): feasibility cuts
- Constraints (2): optimality cuts

Boundary Conditions

- For t = 1, $h_{t,k} T_{t-1,k} x_{t-1,A(t,k)}$ is replaced by b
- For t = H, θ and constraints (2) and (3) are removed

Dual of NLDS(t, k)

$$\max_{\pi,\rho,\sigma} \pi^{T} (h_{t,k} - T_{t-1,k} x_{t-1,A(t,k)}) + \sum_{j=1}^{r_{t,k,j}} \rho_{j}^{T} e_{t,k} + \sum_{j=1}^{s_{t,k}} \sigma_{j}^{T} d_{t,k,j}$$
s.t. $\pi^{T} W_{t,k} + \sum_{j=1}^{r_{t,k}} \rho_{j}^{T} E_{t,k,j} + \sum_{j=1}^{s_{t,k}} \sigma_{j}^{T} D_{t,k,j} \leq c_{t,k}^{T}$

$$\sum_{j=1}^{r_{t,k}} 1^{T} \rho_{j} = 1$$
 $\rho_{1}, \dots, \rho_{r_{t,k}} \geq 0$
 $\sigma_{1}, \dots, \sigma_{s_{t,k}} \geq 0$

Feasibility Cuts

If NLDS(t, k) is infeasible, solver returns $(\pi, \sigma_1, \dots, \sigma_{s_{t,k}})$ with $\sigma_j \geq 0, j = 1, \dots, s_{t,k}$, such that:

•
$$\pi^T(h_{t,k} - T_{t-1,k}x_{t-1,A(t,k)}) + \sum_{j=1}^{s_{t,k}} \sigma_j^T d_{t,k,j} > 0$$

•
$$\pi^T W_{t,k} + \sum_{j=1}^{s_{t,k}} \sigma_j^T D_{t,k,j} \leq 0$$

The following is a valid feasibility cut for NLDS(t-1, a(k)):

$$(FC): D_{t-1,A(t,k)}x \leq d_{t-1,A(t,k)}$$

where

$$D_{t-1,A(t,k)} = \pi^{T} T_{t-1,k}$$

$$d_{t-1,A(t,k)} = \pi^{T} h_{tk} + \sum_{j=1}^{s_{t,k}} \sigma_{j}^{T} d_{t,k,j}$$

Optimality Cuts

For all $k \in D_{t-1,j}$, solve NLDS(t,k), then compute

$$E_{t-1,j} = \sum_{k \in D(t-1,j)} p_t(k|j) \cdot (\pi_{t,k})^T T_{t-1,k}$$

$$e_{t-1,j} = \sum_{k \in D(t-1,j)} p_t(k|j) \cdot ((\pi_{t,k})^T h_{t,k} + \sum_{i=1}^{r_{t,k}} \rho_{t,k,i}^T e_{t,k,i} + \sum_{i=1}^{s_{t,k}} \sigma_{t,k,i}^T d_{t,k,i})$$

The following is an optimality cut for NLDS(t-1,j):

$$E_{t-1,j}x + \theta \geq e_{t-1,j}$$

The Nested Decomposition Algorithm

Pass	t	k	Result	Action
F	1		Feasible	$t \leftarrow 2, k \leftarrow 1$, Store θ_1, x_1
				Send x to $NLDS(2, j), j \in D(1)$
F	1		Infeasible	Infeasible, exit
F	$1 < t \le H - 1$	$k < \Xi_t $	Feasible	$k \leftarrow k + 1$,
				Send x to $NLDS(t + 1, j), j \in D(t, k)$
F	$1 < t \le H - 1$	$k < \Xi_t $	Infeasible	$k \leftarrow k + 1$
				Add FC to $NLDS(t-1, A(t, k))$
F	$1 < t \le H - 1$	$ \Xi_t $	Feasible	$t \leftarrow t + 1, k \leftarrow 1$
				Send x to $NLDS(t + 1, j), j \in D(t, k)$
				If $t = H - 1$ then Pass \leftarrow B
F	$1 < t \le H - 1$	$ \Xi_t $	Infeasible	$t \leftarrow t + 1, k \leftarrow 1$
				Add FC to $NLDS(t-1, A(t, k))$
				If $t = H - 1$ then Pass \leftarrow B
В	$t \geq 2$	$k < \Xi_t $	Feasible	$k \leftarrow k + 1$, Store (π, ρ, σ)
В	$t \geq 2$	$k < \Xi_t $	Infeasible	$k \leftarrow k + 1$
				Add FC to $NLDS(t-1, A(t, k))$
В	2	$ \Xi_t $	Feasible	Pass \leftarrow F, $t \leftarrow$ 1
				Add OC to NLDS(1)
				If $\theta_1 \geq e - Ex_1$: Optimal, exit
В	2	$ \Xi_t $	Infeasible	Pass \leftarrow F, $t \leftarrow$ 1
				Add FC to NLDS(1)
В	t > 2	$ \Xi_t $	Feasible	$t \leftarrow t - 1, k \leftarrow 1$
				Add OC to $NLDS(t-1, A(t, k))$
В	t > 2	$ \Xi_t $	Infeasible	$t \leftarrow t - 1, k \leftarrow 1$
				Add FC to $NLDS(t-1, A(t, k))$

Direction of Movement

Whenever NLDS(t, k) is solved, the following data is generated

- If feasible:
 - Trial decision $x_{t,k}$ (can be sent forward)
 - Optimality cut (can be sent backwards)
- If infeasible: feasibility cut (can be sent backwards)

Alternative protocols

- Fast-forward-fast-back: move in current direction, as far as possible
- Fast-forward: move forward whenever possible
- Fast-back: move backwards whenever possible

If all Ξ_t are finite sets and all x have finite upper bounds, then the nested L-shaped method converges finitely to an optimal solution

Proof: BL, page 268

Table of Contents

- Backward Solution of Multistage Stochastic Linear Programs
- 2 Dynamic Programming on Multi-Stage Scenario Trees
- Nested L-Shaped Decomposition Subproblem
- The Nested L-Shaped Method
- 5 Example

Hydrothermal Scheduling over Three Periods

Consider the following hydrothermal problem:

- Demand: 1000 MW
- Energy capacity of dam: 750 MWh
- Marginal cost of thermal production: 25 \$/MWh
- Capacity of thermal units: 500 MW
- Marginal cost of unserved demand: 1000 \$/MWh

Scenario Tree

Is the tree serially independent?

NLDS

NLDS for first period:

NLDS(1):
$$\min 25 \cdot p + 1000 \cdot l$$

s.t. $x \le 750$
 $x \le 600 - q$
 $p + q + l \ge 1000$
 $p \le 500$
 $x, p, q, l \ge 0$

Algorithm Progress: Forward Pass 1

Forward pass 1

Greedy behavior \Rightarrow load shedding in stage 2, node 2, and stage 3, nodes 2 and 4

Algorithm Progress: Backward Pass 1

Backward pass 1

Cuts generated in stage 2 are identical (why?)

Algorithm Progress: Forward Pass 2

Forward pass 2

Note utilization of hydro in stage 1

Algorithm Progress: Backward Pass 2

Backward pass 2

New optimality cuts: node 1 of stage 2, stage 1

Convergence and Optimal Solution

Third forward pass \rightarrow no new cut \Rightarrow convergence

Load shedding in optimal policy: nodes 2 and 4 of stage 3

Optimal policy prevents spillage in scenarios of abundant water supply (node 1 of stage 3)

Optimality Cuts of L-Shaped Method and Nested Decomposition

- L-shaped method: optimality cuts support value function
- Nested decomposition: optimality cuts may be strictly below the value function