The Multicut L-Shaped Method Operations Research

Anthony Papavasiliou

Contents

The Multicut L-Shaped Method

Example: Birge-Louveaux

Example: Capacity Expansion Planning

Table of Contents

1 The Multicut L-Shaped Method

Example: Birge-Louveaux

Example: Capacity Expansion Planning

Extensive Form 2-Stage Stochastic Linear Program

(EF):
$$\min c^T x + \mathbb{E}_{\omega}[\min q(\omega)^T y(\omega)]$$

$$Ax = b$$

$$T(\omega)x + W(\omega)y(\omega) = h(\omega)$$

$$x \ge 0, y(\omega) \ge 0$$

- First-stage decisions: $x \in \mathbb{R}^{n_1}$
- second-stage decisions: $y(\omega) \in \mathbb{R}^{n_2}$
- First-stage parameters: $c \in \mathbb{R}^{n_1}$, $b \in \mathbb{R}^{m_1}$, $A \in \mathbb{R}^{m_1 \times n_1}$
- Second-stage parameters: $q(\omega) \in \mathbb{R}^{n_2}$, $h(\omega) \in \mathbb{R}^{m_2}$, $T(\omega) \in \mathbb{R}^{m_2 \times n_1}$ and $W(\omega) \in \mathbb{R}^{m_2 \times n_2}$

L-Shaped Master Problem

We know that

$$V(x) = \{ \sum_{\omega} p_{\omega} \min q_{\omega}^T y_{\omega} | W_{\omega} y_{\omega} = h_{\omega} - T_{\omega} x, y_{\omega} \ge 0 \}$$

is a *piecewise linear* function of x

Define master problem as

$$(M): \quad z_{k} = \min c^{T} x + \theta$$

$$Ax = b$$

$$\sigma^{T} (h - Tx) \leq 0, \sigma \in R_{k} \subseteq R \qquad (1)$$

$$\theta \geq \pi^{T} (h - Tx), \pi \in V_{k} \subseteq V \qquad (2)$$

$$x \geq 0$$

- Feasibility cuts: equation 1
- Optimality cuts: equation 2

Multicut L-Shaped Master Problem

We also know that

$$Q_{\omega}(x) = \{ \min q_{\omega}^T y | W_{\omega} y = h_{\omega} - T_{\omega} x, y \ge 0 \}$$

is a *piecewise linear* function of x

$$(M): \min c^{T}x + \sum_{\omega=1}^{N} p_{\omega}\theta_{\omega}$$

$$Ax = b$$

$$\sigma^{T}(h_{\omega} - T_{\omega}x) \leq 0, \sigma \in R_{\omega k} \subseteq R_{\omega}$$

$$\theta_{\omega} \geq \pi^{T}(h_{\omega} - T_{\omega}x), \pi \in V_{\omega k} \subseteq V_{\omega}$$

$$x \geq 0$$

L-Shaped Optimality Cuts

Consider a trial first-stage decision x^v Let π_ω be simplex multipliers of second-stage problem:

min
$$q_{\omega}^T y$$

s.t. $W_{\omega} y = h_{\omega} - T_{\omega} x^{\nu}$
 $y \ge 0$

Then
$$\sum_{\omega} p_{\omega} \pi_{\omega}^{T} (h_{\omega} - T_{\omega} x)$$
 supports $V(x)$ at x^{v}

Multicut L-Shaped Optimality Cuts

Consider a trial first-stage decision x^v Let π_ω be simplex multipliers of second-stage problem:

$$\min q_{\omega}^{T} y$$
s.t. $Wy = h_{\omega} - T_{\omega} x^{v}$

$$y \ge 0$$

Then $\pi_{\omega}^{T}(h_{\omega}-T_{\omega}x)$ supports $Q_{\omega}(x)$ at x^{v}

L-Shaped Method: Graphical Illustration of Optimality Cuts

Multicut L-Shaped Method: Graphical Illustration of Optimality Cuts

L-Shaped Versus Multicut

L-Shaped Versus Multicut

The L-Shaped Algorithm

Step 0: Set
$$k = 0$$
, $V_0 = R_0 = \emptyset$
Step 1: Solve (M)

- If (M) is feasible, store x_k
- If (M) is infeasible, exit: infeasible

Step 2: For $\omega = 1, ..., N$, solve (S_{ω}) with x_k as input

- If (S_{ω}) is infeasible, let $S_{k+1} = S_k \cup \{\sigma_{k+1}\}$, where σ_{k+1} is an extreme ray of (S_{ω}) , let k = k + 1 and return to step 1
- If (S_{ω}) is feasible, store $\pi_{\omega,k+1}$

Step 3: Let
$$V_{k+1} = V_k \cup \{(p_1\pi_{1,k+1}, \dots, p_N\pi_{N,k+1})\}$$

- If $V_k = V_{k+1}$ then terminate with (x_k, y_{k+1}) as the optimal solution.
- Else, let k = k + 1 and return to step 1

The Multicut L-Shaped Algorithm

Step 0: Set k = 0, $V_{\omega 0} = R_{\omega 0} = \emptyset$ for all ω . Step 1: Solve (M).

- If (M) is feasible, store x_k .
- If (M) is infeasible, exit. The problem is infeasible.

Step 2: For $\omega = 1, ..., N$, solve (S_{ω}) with x_k as input.

- If (S_{ω}) is infeasible, let $S_{\omega,k+1} = S_{\omega k} \cup \{\sigma_{\omega,k+1}\}$. Let k = k+1 and return to step 1.
- If (S_{ω}) is feasible, store $\pi_{\omega,k+1}$.

Step 3: For
$$\omega = 1, ..., N$$
, let $V_{\omega,k+1} = V_{\omega k} \cup \{\pi_{\omega,k+1}\}$.

- If $V_{\omega k} = V_{\omega,k+1}$ for all ω then terminate with (x_k, y_{k+1}) as the optimal solution.
- Else, let k = k + 1 and return to step 1.

Table of Contents

The Multicut L-Shaped Method

Example: Birge-Louveaux

3 Example: Capacity Expansion Planning

Example: Birge-Louveaux

$$z = \min \mathbb{E}_{\xi}(y_1 + y_2)$$

s.t. $0 \le x \le 10$
 $y_1 - y_2 = \xi - x$
 $y_1, y_2 \ge 0$

$$\xi = \begin{cases} 1 & p_1 = 1/3 \\ 2 & p_2 = 1/3 \\ 4 & p_3 = 1/3 \end{cases}$$

$$\mathit{K}_2 = \mathbb{R}$$

Multicut L-Shaped Method in Example 2

- Iteration 1, Step 1: $x^1 = 0$
- Iteration 1, Step 3: x^1 not optimal, add cuts:

$$\theta_1 \geq \frac{1-x}{3}, \theta_2 \geq \frac{2-x}{3}, \theta_3 \geq \frac{4-x}{3}$$

- Iteration 2, Step 1: $x^2 = 10$, $\theta_1^2 = -3$, $\theta_2^2 = -8/3$, $\theta_3^2 = -2$
- Iteration 2, Step 3: x² not optimal, add cuts:

$$\theta_1 \ge \frac{x-1}{3}, \theta_2 \ge \frac{x-2}{3}, \theta_3 \ge \frac{x-4}{3}$$

• Iteration 3, Step 1: $x^3 = 2$, $\theta_1^3 = 1/3$, $\theta_2^3 = 0$, $\theta_3^3 = 2/3$ is optimal

Tradeoffs

Multicut L-shaped method has:

- More detailed representation of value function (+)
- Larger master problem (-)

Typically (not always), fewer iterations are required in multicut L-shaped method, but each iteration requires more time

Table of Contents

The Multicut L-Shaped Method

Example: Birge-Louveaux

Master Problem

$$(M): \min_{x\geq 0} \sum_{i=1}^{n} I_{i} \cdot x_{i} + \sum_{\omega=1}^{N} p_{\omega} \theta_{\omega}$$

$$\theta_{\omega} \geq \sum_{j=1}^{m} \lambda_{\omega j}^{v} D_{j} + \sum_{i=1}^{n} \rho_{\omega i}^{v} x_{i}, v \in V_{\omega k}$$

$$\theta_{\omega} \geq 0$$

Sequence of Investment Decisions

Iteration	Coal (MW)	Gas (MW)	Nuclear (MW)	Oil (MW)
1	0	0	0	0
2	0	0	0	10701.3
3	0	14309.6	0	0
4	10407	0	0	0
5	0	0	7154.8	5034.6
6	0	2329	7154.8	1410
7	0	1280.2	8518.8	1647.6
8	2102.1	3310.9	5756	0
9	8767.3	236.7	0	2291.4
10	6396	0	3919	1168.8
11	8230.5	2165	773.5	0
12	5085	1311	3919	854

Sequence of Value Function Approximations

Iteration	L-shaped	Multicut
	θ_{k}	$\sum_{\omega=1}^{N} p_{\omega} \theta_{\omega k}$
1	0	0
2	0	0
3	0	14674
4	0	61181
5	0	61181
6	0	28444
7	59736	83545
8	40998	186865
9	50222	108401
10	96290	171767
11	61593	125272
12	186788	
13	107349	
14	124788	
15	130041	
16	125272	

Observations

- Multi-cut converges with fewer iterations
- Multi-cut incurs non-zero second stage cost in iteration 3 (L-shaped method requires 7 iterations)
- Iterations 5 and 6 have identical $\sum_{\omega=1}^{N} p_{\omega} \theta_{\omega k}$, does not imply convergence
- θ_k for L-shaped need not be increasing (see iteration 12, attempt to remove nuclear)
- Final iterations of L-shaped (12-15) oscillate around near-optimal mix