Lagrange Relaxation:

Decomposition Algorithms

Operations Research

Anthony Papavasiliou

1/63

Q Context

e Dual Function Optimization Algorithms
@ Subgradient Method
@ Cutting Plane Algorithm
@ Bundle Methods
@ Level Method
@ Numerical Comparison

e Alternating Direction Method of Multipliers

2/63

Table of Contents

0 Context

3/63

When to Use Lagrange Relaxation

Consider the following optimization problem:

*

p* = maxfy(x)
f(x)<0
h(x) =0

withx e Dc R, f:R" - R™ h:R" - R/

Context for Lagrange relaxation:

@ Complicating constraints f(x) < 0 and h(x) = 0 make the
problem difficult

© Dual function is relatively easy to evaluate

g(u, v) = sup(fo(x) — u”f(x) — vTh(x)) (1)

xeD

|ldea of Dual Decomposition

@ Dual function g(u, v) is convex regardless of primal
problem

@ Computation of g(u, v), m € 9g(u, v) is relatively easy
@ But... g(u, v) may be non-differentiable

Idea: minimize g(u, v) using algorithms that rely on linear
approximation of g(u, v):

@ Subgradient method

@ Cutting plane methods

© Bundle methods

©Q Level methods

and a closely related method: alternating direction of multipliers
method (ADMM)

Dual Function Properties

Proposition: g(u, v) is convex lower-semicontinous’. If (u, v)

. . . —f .

is such that (1) has optimal solution x,,y, then (Xuv) is a
—h(Xu,v)

subgradient of g

A

A function is lower-semicontinuous when its epigraph is a closed subset
of R" x R’ x R.

Table of Contents

e Dual Function Optimization Algorithms
@ Subgradient Method
@ Cutting Plane Algorithm
@ Bundle Methods
@ Level Method
@ Numerical Comparison

7/63

Subgradient Method

Subgradient method is simple algorithm to minimize
non-differentiable convex function g

Uk41 = Uk — 0Tk

@ Uy is the k-th iterate
@ 7y is any subgradient of g at uk

@ «ay > 0is the k-th step size

Not a descent method, so we keep track of the best point so far

gt = min g(u;)
i=1 k

=1,..

Step Size Rules

Step sizes are fixed ahead of time
@ Constant step size: ax = « (constant)
@ Constant step length: a, = ~/||7k|l2 (SO ||Uk+1 — Uk|l2 = 7)

@ Square summable but not summable: step sizes satisfy

o0 o0
Zai < oo,Zak = 00
k=1 k=1

@ Non-summable diminishing: step sizes satisfy

x
lim ax =0, ax =00
k—o00 1

@ d* =inf, g(u) > oo, with g(u*) = d*

@ |72 < Gfor all 7 € dg (equivalent to Lipschitz condition
on g)

® R>|luy —ur2

These assumptions are stronger than needed, just to simplify
proofs

10/63

Convergence Results

Define g = limy_o. g

@ Constant step size: g, — d* < Ga?/2, i.e. converges to
G?a/2-suboptimal (converges to d* if g differentiable, o
small enough)

@ Constant step length: g.. — d* < Gv/2, i.e. converges to
G~/2-suboptimal

@ Diminishing step size rule: g, = d*, i.e. converges

11/63

Convergence Proof

Key quantity: Euclidean distance to the optimal set, not function
value
Let u* be any minimizer of g

Ukyr — U3 = [k — axmk — U3
= |luk — U3 — 20 (uk — u*) + afl|mx 3

< luk — U113 — 2ax(g(uk) — d*) + of |3

Using a* = g(u*) > g(uk) + 7] (u* — ug)

12/63

Apply recursively to get

°
|Uk1 — U™]|5

2
< luy -5 - 22041 —d’) +Za, [Etlhs

k
Za’ best d* Zal

to get
RZ + G2 Z/ 1 a

221 1 @

best *
g9 —d

13/63

Constant step size: For ax = o we get

R? + G?ka?
best _ 4*x
Ik @ < 2ka

Right hand side converges to G?a/2 as k — oo

Constant step length: for o, = v/||7x||2 we get

< R+ Gy, o . R +q%k

best i
—d <
9 =T oy o 24k/G

Right hand side converges to Gy/2 as k — oo

14/63

Square summable but not summable step sizes: Suppose
step sizes satisfy

oo [e.9]

Zai < oo,Zak = 00
k=1 k

=1
then

_R Gy o

- 2 Zf'(:1 Qi

as k — oo, numerator converges to a finite number,
denominator converges to oo, so gPest — g*

gltzest —d*

15/63

Polyak Step Size

@ Choice due to Polyak:

9(ux) —a*

a _=
T R)2

(can also use when optimal value is estimated)

@ Motivation: start with basic inequality
Uit = U153 < [luk —][— 2au(g(ux) — d*) + af w3

and choose ay to minimize right hand side

16/63

@ Yields
(9(ux) — d*)?

2 2
k1 — U™l < [luk — u*[|5 — 5
H7Tk”2

(in particular ||ux — u*||> decreases at each step)
@ Applying recursively,
k *
> P
i—1 H7T/H2
and so
k
> _(g(w) - d")? < R?G?
P

which proves g(ux) — d*

17/63

Graphical lllustration of Polyak Rule

g is an estimate of d*

Uk+1 Uk

g(ur) + Dg(ue) (u — w)

18/63

Projected Subgradient Method

Solves constrained optimization problem

min g(u)

st.uecC

where g : R" — R,C C R" are convex
Projected subgradient method is given by

U1 = P(Uk — i)

P is (Euclidean) projection on C and 7y € 0g(u)

19/63

Same convergence results:

@ For constant step size, converges to neighborhood of
optimal (for g differentiable and o small enough,

converges)
@ For diminishing summable step sizes, converges

Key idea: projection does not increase distance to u*

20/63

Motivation for Cutting Plane Algorithm

The subgradient algorithm uses subgradient information locally

Motivation for cutting plane algorithm: use subgradient
information globally

Cutting plane algorithm, also known as Kelley, Cheney,
Goldstein method, uses bundle of information
(9(uk),mx),k =1,...K, where mx € dg(uk)

21/63

Cutting Plane Algorithm

Define g(u) < g(u):

A

g(u) = minéd
st.0>g(u)+7f(u—u), k=1,...K

Given bundle of information (g(ux),nx), k =1,...,K:

@ Solve min g(u), denote uk. 1 as optimal solution
Q@ Add UK41, TK41 € 8Q(UK+1) to bundle
© Return to step 1

22/63

Graphical lllustration

’U%U /U’Z Uy U3

23/63

@ 0y is increasing
@ g(ux) is not necessarily increasing

@ Initialization requires restricting u within a confidence
region

@ Cutting plane algorithm is generally unstable

@ L-shaped method is the cutting plane algorithm applied to
two-stage stochastic linear programs

24/63

Analytic Center Cutting Plane Method (ACCPM)

Suppose dom g C R™ and consider the polyhedron in R™*1:

Pk = {(u,0):9(u) <0 <0y}
= {(u,0): g(uk)+mf(u—u) <O <Oxfork=1,... K}

Py is a polyhedron in RM+1

@ Cutting plane method takes (uk.1,0k.1) as point with
lowest 6 in Py, ...

@ ... but this is unstable

@ Instead, analytic center cutting plane method takes a
‘central’ point in Pk

25/63

Analytic Center

Analytic center of polyhedron
P={u:alu<b,i=1,...,m}:

m
AC(P) = argmin, — > log(b; — a] u)

i=1

26/63

ACCPM Algorithm

Given an initial polyhedron P,
k=0
Repeat
Compute w1 = AC(Px)
Query cutting-plane oracle at u_ 1
If uk,1 optimal, quit
Else, add returned cutting-plane inequality to P:
Prs1 = Px N {0 > g(uk) + 7] (u— uk)}
If Pry1 =0, quit
k:=k+1

27/63

Stopping Criterion

Since ACCPM is not a descent method, we keep track of best
point found, and best lower bound

@ Best function value so far: g8t = min;_s___x g(u;)
@ Best lower bound so far: 9,‘393’-‘ = max;—1, k0
@ Can stop when gPest — gbest < ¢

@ Guaranteed to be e-suboptimal

28/63

Bundle Methods

Rationale of bundle methods:
@ Choose a stability center U, that we believe is near-optimal

@ Because g may be highly inaccurate (g < g), minimizing g
may result in ux.1 very far from &

@ Idea: add quadratic stabilizing term ||u — U2

29/63

Define

and solve

(BP) :

0> g(uk) +7)(u—uk),k=1,...

Denote (uk.1,0k.1) as unique optimal solution

30/63

Graphical lllustration

g(u) Smallt

f,"('u) Large t

g(u)

1 UK+1 UK +1

Small t = small steps, large t = large steps

31/63

Key quantities:

»

6 = g(0) - 9(uky1)
o . o 1 .
0 = g(b)—9(uks1) =0 — 27““K+1 - U||'2

Both are predictions of g(&) — g(uk.1)

32/63

Stability Center Update

Consider the following condition:

9(uk11) < 9(uk) — Ko (2)

where « is a fixed tolerance

Two possibilities:
e If (2) is true, descent step: set U := ux 1

@ If (2) is not true, null step: do not change & and update
bundle with (g(ux+1), Tk+1)

33/63

Termination

Note:]
0 € 09(ur+1) + (Uk+1 — T)

so # € 09(uk,1) is computable as

7= (U—ukp)/t

The following inequality is obtained, for any u € R™:

g(u) > g(u) > (k1) + 77 (U— Uki1)
= g(0)—6+7T(u— uky)

Terminate when both § and # are small

34/63

Bundle Method Algorithm

k:=0
Repeat
Compute uk 1 solving (BP)
If 6 and 7 are sufficiently small, quit
If equation (2) is true, perform descent step, else perform
null step
k:=k+1

35/63

Motivation of Level Method

Consider a level L, then the level set of g is
{ueR™:g(u) < Ly}

Idea of level method: project current iterate vy on
{u:9(u) < Li}

Justification:

@ minimizer of g can be highly unstable, but level set of g is
relatively stable

@ projections are computationally "cheap"

36/63

Choosing Level Sets

Recall the following definitions:

best :

9k _min g(u;)
i=1,...k

oot = max 6F
i=1,... .k

and consider the following level set of g, parametrized on \:
Lk —)\g,k?est + (1 _)‘)QEeSt

Consider two extremes:
@ For \ = 0, algorithm makes no progress

@ For \ = 1, algorithm reduces to cutting plane method

37/63

Graphical Interpretation

G(u)

g(u)

best
oy

RN

w: §lu) < AgPest 4 (1 — A)gpest
& k

38/63

Level Set Algorithm

k=0
Repeat
Compute w1 by solving

min ||u — uk|13

gu) + 7l (u—u) > Ly, i=1,... .k

Add (g(uk+1), mk+1) to bundle, where 71 € g(Uk1)
Update 62°5, gpes|

best best i
If RS — OR%Y < e, quit

k:=k+1

39/63

Convergence Result

Denote
@ L: Lipschitz constant of g
@ R: diameter of domain of g
@ c: a constant that depends only on A of level method

To obtain a gap smaller than ¢, it suffices to perform
M(e) < o 2)
€

iterations

40/63

Case Study

Unit commitment on Belgian power system:
@ 62 generators (nuclear, gas, biomass, oil)

@ Demand (2014) net of wind, solar, hydro

Three cases:
@ Case 1: high demand
@ Case 2: medium demand

@ Case 3: low demand

41/63

Unit commitment problem
min ~ Ci(x;)

x,-eD,-,ieI

(uh): D clxh<ot=1,....T
iel

Relax complicating constraints to obtain the following
Lagrangian:

L(x,u) = (Ci(x;) + Z utcl(x!))

iel
What have we gained? We can solve one problem per plant:

min (Ci(x) + > utcl(x)

42/63

Termination Criterion

Ju—urll2 flu—ur]o iter
e =0.01
Level 10.0 4.8 19
ACCPM 20.7 6.1 38
e = 0.001
Level 8.3 4.7 33
ACCPM 8.8 3.7 192
e = 0.0005
Level 9.7 4.9 48
ACCPM 7.7 4.6 249

Table: Case 1

43/63

[u—uz |lu—utfle iter
e = 0.01
Level 6.8 3.4 22
ACCPM 16.9 6.7 52
e = 0.001
Level 3.2 1.2 49
ACCPM 6.4 2.2 211
e = 0.0005
Level 3.1 1.4 36
ACCPM 5.8 1.9 253

Table: Case 2

44/63

Ju—ulz lu— vt

iter

e = 0.01
Level 7.5 3.2 19
ACCPM 17.7 6.7 54
e = 0.001
Level 1.7 0.8 45
ACCPM 5.4 2.1 240
e = 0.0005
Level 1.9 1.0 57
ACCPM 3.8 1.3 284

Table: Case 3

45/63

Prices

Convex Hull Prices, eps = 0.0100

<

=

-

=

~

2

§ v

° ! ! 1] Level case 1

el | I | == =ACCPM case 1

E 1 — = optimal CHP case|1

[Level case 2
251~

CCPM case 2

~ = -optimal CHP case|
Level case 3

201 — = —ACCPM case 3

— —optimal CHP casc

I I I I I I L |
0 10 20 30 40 50 60 70 80
Time [hour]

Figure: Prices for e = 0.01

46/63

Price euro/MW h

Convex Hull Prices, eps = 0.0010

~ = optimal CHP case|1
Level case 2
25~ - = ~ACCPM case 2
~ = optimal CHP case|2
Level case 3
201 = = —ACCPM case 3
— = optimal CHP case|3
v
15 1 1 1 1 1 1 1]
o 10 20 30 40 50 60 70

Time [hour]

Figure: Prices for e = 0.001

47/63

Price euro/MW h

25

20

Convex Hull Prices, eps = 0.0005

~—-optimal CHP case|
Level case 2

- = ~ACCPM case 2

~ = optimal CHP case|
Level case 3

= = —ACCPM case 3

~ = optimal CHP cas|

1

20 30 40 50 60
Time [hour]

Figure: Prices for e = 0.0005

48/63

Conclusions:
@ Level method converges in fewer iterations

@ Dual multipliers that achieve target e are too unstable for
e = 0.01, very stable for e = 0.0005

49/63

Parameter Tuning for the Level Method

Recall the trade-off in tuning A for the level method:
@ For A = 0, algorithm makes no progress
@ For \ = 1, algorithm reduces to cutting plane method

We want to find a suitable intermediate value

50/63

Figure: Required iterations for horizon of 2, 5, 24 and 72 periods.
Note v =1 — A\

Number of iterations required

Optimal a for the Level method

AN

01 02 03 04 05 06 07 08 09
a value

Intuitive result: Cutting plane method works well only in low

dimensions

51/63

Figure: Level method performance for two different shapes of
demand curves for 72 period horizon

wo. Optimalaforthe Level method Optimal a for the Level method
160

8

8

8

Number of iterations required

2 w0
° 80
8
= 60
2 60
z

. W

I
01 02 03 04 05 06 07 08 09 0 005 01 015 02 025 03 035
a value a value

Conclusion: picka =1—-X=0.2

52/63

Convergence Behavior

Convergence rate of the Algorithms

L'—-LB
g

Relative error

Level algo.
- — —ACCPM algo.
0 - = Kelley algo

- Subgradient algo

10" 10
Number of iterations

10

Figure: Convergence on 72-period instance

53/63

Volatility of the lterate Sequence

Prices variations of case 1, Level Prices variations of case 1, ACCPM

Figure: Box plots of iterates on 72-period instance, low demand (case

1)

54/63

Prices variations of case 2, Level Prices variations of case 2, ACCPM

o
g
"1
ERE
H siial
= 4
ELA
5 +
2 i
oty
" s
TTiiseiae TTTaseTs o TTeissTes
Time period [hour] Time period (hour Time period [hour]

Figure: Box plots of iterates on 72-period instance, medium demand
(case 2)

55/63

i SORANE
TS
T
PR
[T S
So e oo s+
i ey
‘‘‘‘‘ oo
[=
- e+

I
S
S

- e
AR
T
O <
R
= +

b o
=
JHD - 911011 913 1040 $9011
g

Figure: Box plots of iterates on 72-period instance, high demand

(

)

case 3

56/63

Conclusions of Numerical Analysis

Level method and ACCPM dominate subgradient and cutting
plane method in terms of

@ convergence rate
@ volatility of iterates

in large-scale problems

57/63

Table of Contents

e Alternating Direction Method of Multipliers

58/63

Alternating Direction Method of Multipliers

ADMM problem form (with f, ¢ convex)

min f(x) + ¢(2)
st. Ax+Bz=c

Two sets of variables, with separable objective
Augmented Lagrangian:

Ly(x.2,v) = (x)+(2) +vT (Ax+Bz—¢)+(p/2)| Ax+ Bz — c|3
ADMM:

@ x-minimization: x4 = argmin,L,(x, Zx, vx)

@ z-minimization: zx1 = argmin,L,(Xx+1, Z, vk)

@ Dual update: vx 1 = vk + p(Axkr1 + Bzx1 — C)

59/63

ADMM and Optimality Conditions

Optimality conditions (for differentiable case):
@ Primal feasibility: Ax + Bz—c =0
@ Dual feasibility: Vf(x) + ATv =0, Vg(z)+B'v=0

Since zx14 minimizes L,(Xk+1, Z, vx) we have

0 = Vg(2kr1)+ B vk + pBT(Axk 1 + Bzk1 — ©)
= V(2Zk1) + B vk

So with ADMM dual variable update, (X1, Zkt1, Yki1) Satisfies
second dual feasibility condition
Primal and first dual feasibility condition are achieved as k — oo

60/63

Convergence

Assume (very little):
@ f, g convex, closed, proper
@ Ly has a saddle point
Then ADMM converges:
@ iterates approach feasibility: Axx + Bzx — ¢ — 0

@ Objective approaches optimal value: f(xx) + ¢(xx) — p*

61/63

	Context
	Dual Function Optimization Algorithms
	Subgradient Method
	Cutting Plane Algorithm
	Bundle Methods
	Level Method
	Numerical Comparison

	Alternating Direction Method of Multipliers

