Lagrange Relaxation: Decomposition Algorithms

Operations Research

Anthony Papavasiliou

Contents

- Context
- Dual Function Optimization Algorithms
 - Subgradient Method
 - Cutting Plane Algorithm
 - Bundle Methods
 - Level Method
 - Numerical Comparison
- Alternating Direction Method of Multipliers

Table of Contents

- Context
- Dual Function Optimization Algorithms
 - Subgradient Method
 - Cutting Plane Algorithm
 - Bundle Methods
 - Level Method
 - Numerical Comparison
- Alternating Direction Method of Multipliers

When to Use Lagrange Relaxation

Consider the following optimization problem:

$$p^* = \max f_0(x)$$

$$f(x) \le 0$$

$$h(x) = 0$$

with $x \in \mathcal{D} \subset \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^m$, $h : \mathbb{R}^n \to \mathbb{R}^l$

Context for Lagrange relaxation:

- Complicating constraints $f(x) \le 0$ and h(x) = 0 make the problem difficult
- Dual function is relatively easy to evaluate

$$g(u, v) = \sup_{x \in \mathcal{D}} (f_0(x) - u^T f(x) - v^T h(x))$$
 (1)

Idea of Dual Decomposition

- Dual function g(u, v) is convex *regardless* of primal problem
- Computation of g(u, v), $\pi \in \partial g(u, v)$ is relatively easy
- But... g(u, v) may be non-differentiable

Idea: minimize g(u, v) using algorithms that rely on linear approximation of g(u, v):

- Subgradient method
- Cutting plane methods
- Bundle methods
- 4 Level methods

and a closely related method: alternating direction of multipliers method (ADMM)

Dual Function Properties

Proposition: g(u, v) is convex lower-semicontinous¹. If (u, v) is such that (1) has optimal solution $x_{u,v}$, then $\begin{bmatrix} -f(x_{u,v}) \\ -h(x_{u,v}) \end{bmatrix}$ is a subgradient of g

 $^{^1}$ A function is lower-semicontinuous when its epigraph is a closed subset of $\mathbb{R}^m \times \mathbb{R}^l \times \mathbb{R}$.

Table of Contents

- 1 Context
- 2 Dual Function Optimization Algorithms
 - Subgradient Method
 - Cutting Plane Algorithm
 - Bundle Methods
 - Level Method
 - Numerical Comparison
- 3 Alternating Direction Method of Multipliers

Subgradient Method

Subgradient method is simple algorithm to minimize non-differentiable convex function g

$$u_{k+1} = u_k - \alpha_k \pi_k$$

- u_k is the k-th iterate
- π_k is any subgradient of g at u_k
- $\alpha_k > 0$ is the k-th step size

Not a descent method, so we keep track of the best point so far

$$g_k^{ ext{best}} = \min_{i=1,\dots,k} g(u_i)$$

Step Size Rules

Step sizes are fixed ahead of time

- Constant step size: $\alpha_k = \alpha$ (constant)
- Constant step length: $\alpha_k = \gamma/\|\pi_k\|_2$ (so $\|u_{k+1} u_k\|_2 = \gamma$)
- Square summable but not summable: step sizes satisfy

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \sum_{k=1}^{\infty} \alpha_k = \infty$$

Non-summable diminishing: step sizes satisfy

$$\lim_{k\to\infty}\alpha_k=0, \sum_{k=1}^\infty\alpha_k=\infty$$

Assumptions

- $d^* = \inf_u g(u) > \infty$, with $g(u^*) = d^*$
- $\|\pi\|_2 \le G$ for all $\pi \in \partial g$ (equivalent to Lipschitz condition on g)
- $R \ge ||u_1 u^*||_2$

These assumptions are stronger than needed, just to simplify proofs

Convergence Results

Define $g_{\infty} = \lim_{k o \infty} g_k^{\mathsf{best}}$

- Constant step size: $g_{\infty} d^* \leq G\alpha^2/2$, i.e. converges to $G^2\alpha/2$ -suboptimal (converges to d^* if g differentiable, α small enough)
- Constant step length: $g_{\infty}-d^{\star} \leq G\gamma/2$, i.e. converges to $G\gamma/2$ -suboptimal
- Diminishing step size rule: $g_{\infty} = d^{\star}$, i.e. converges

Convergence Proof

Key quantity: Euclidean distance to the optimal set, not function value

Let u^* be any minimizer of g

$$\begin{split} \|u_{k+1} - u^{\star}\|_{2}^{2} &= \|u_{k} - \alpha_{k} \pi_{k} - u^{\star}\|_{2}^{2} \\ &= \|u_{k} - u^{\star}\|_{2}^{2} - 2\alpha_{k} \pi_{k}^{T} (u_{k} - u^{\star}) + \alpha_{k}^{2} \|\pi_{k}\|_{2}^{2} \\ &\leq \|u_{k} - u^{\star}\|_{2}^{2} - 2\alpha_{k} (g(u_{k}) - d^{\star}) + \alpha_{k}^{2} \|\pi_{k}\|_{2}^{2} \end{split}$$

Using
$$d^* = g(u^*) \geq g(u_k) + \pi_k^T(u^* - u_k)$$

Apply recursively to get

$$||u_{k+1} - u^*||_2^2$$

$$\leq ||u_1 - u^*||_2^2 - 2\sum_{i=1}^k \alpha_i (g(u_k) - d^*) + \sum_{i=1}^k \alpha_i^2 ||\pi_i||_2^2$$

$$\leq R^2 - 2\sum_{i=1}^k \alpha_i (g(u_i) - d^*) + G^2 \sum_{i=1}^k \alpha_i^2$$

Now we use

$$\sum_{i=1}^k \alpha_i (g(u_i) - d^*) \ge (g_k^{\mathsf{best}} - d^*) (\sum_{i=1}^k \alpha_i)$$

to get

$$g_k^{\text{best}} - d^\star \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i}$$

Constant step size: For $\alpha_k = \alpha$ we get

$$g_k^{\mathsf{best}} - d^\star \le \frac{R^2 + G^2 k \alpha^2}{2k\alpha}$$

Right hand side converges to $G^2\alpha/2$ as $k\to\infty$

Constant step length: for $\alpha_k = \gamma/\|\pi_k\|_2$ we get

$$g_k^{\text{best}} - d^* \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i} \le \frac{R^2 + \gamma^2 k}{2 \gamma k / G}$$

Right hand side converges to $G\gamma/2$ as $k \to \infty$

Square summable but not summable step sizes: Suppose step sizes satisfy

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \sum_{k=1}^{\infty} \alpha_k = \infty$$

then

$$g_k^{\text{best}} - d^\star \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i}$$

as $k \to \infty$, numerator converges to a finite number, denominator converges to ∞ , so $g_{\nu}^{\text{best}} \to d^{\star}$

Polyak Step Size

Choice due to Polyak:

$$\alpha_k = \frac{g(u_k) - d^*}{\|\pi^{(k)}\|_2^2}$$

(can also use when optimal value is estimated)

Motivation: start with basic inequality

$$\|u_{k+1} - u^{\star}\|_{2}^{2} \le \|u_{k} - u^{\star}\|_{2}^{2} - 2\alpha_{k}(g(u_{k}) - d^{\star}) + \alpha_{k}^{2}\|\pi_{k}\|_{2}^{2}$$

and choose α_k to minimize right hand side

Yields

$$||u_{k+1} - u^*||_2^2 \le ||u_k - u^*||_2^2 - \frac{(g(u_k) - d^*)^2}{||\pi_k||_2^2}$$

(in particular $||u_k - u^*||_2$ decreases at each step)

Applying recursively,

$$\sum_{i=1}^k \frac{(g(u_i) - d^*)^2}{\|\pi_i\|_2^2} \le R^2$$

and so

$$\sum_{i=1}^{k} (g(u_i) - d^*)^2 \le R^2 G^2$$

which proves $g(u_k) \rightarrow d^*$

Graphical Illustration of Polyak Rule

 \bar{g} is an estimate of d^*

$$g(u_k) + \partial g(u_k)^T (u - u_k)$$

Projected Subgradient Method

Solves constrained optimization problem

$$\min g(u)$$

s.t.
$$u \in C$$

where $g:\mathbb{R}^n o \mathbb{R}, \mathcal{C} \subset \mathbb{R}^n$ are convex

Projected subgradient method is given by

$$u_{k+1} = P(u_k - \alpha_k \pi_k)$$

P is (Euclidean) projection on C and $\pi_k \in \partial g(u_k)$

Same convergence results:

- For constant step size, converges to neighborhood of optimal (for g differentiable and α small enough, converges)
- For diminishing summable step sizes, converges

Key idea: projection does not increase distance to u^*

Motivation for Cutting Plane Algorithm

The subgradient algorithm uses subgradient information locally

Motivation for cutting plane algorithm: use subgradient information globally

Cutting plane algorithm, also known as **Kelley, Cheney, Goldstein** method, uses *bundle* of information $(g(u_k), \pi_k), k = 1, ..., K$, where $\pi_k \in \partial g(u_k)$

Cutting Plane Algorithm

Define $\hat{g}(u) \leq g(u)$:

$$\hat{g}(u) = \min \theta$$

s.t. $\theta \ge g(u_k) + \pi_k^T(u - u_k), k = 1, \dots K$

Given bundle of information $(g(u_k), \pi_k)$, k = 1, ..., K:

- Solve min $\hat{g}(u)$, denote u_{K+1} as optimal solution
- **2** Add u_{K+1} , $\pi_{K+1} \in \partial g(u_{K+1})$ to bundle
- Return to step 1

Graphical Illustration

Observations

- θ_k is increasing
- $g(u_k)$ is not necessarily increasing
- Initialization requires restricting u within a confidence region
- Cutting plane algorithm is generally unstable
- L-shaped method is the cutting plane algorithm applied to two-stage stochastic linear programs

Analytic Center Cutting Plane Method (ACCPM)

Suppose dom $g \subseteq \mathbb{R}^m$ and consider the polyhedron in \mathbb{R}^{m+1} :

$$\mathcal{P}_{K} = \{(u,\theta) : \hat{g}(u) \leq \theta \leq \theta_{K}^{\star}\}$$

$$= \{(u,\theta) : g(u_{k}) + \pi_{k}^{T}(u - u_{k}) \leq \theta \leq \theta_{K}^{\star} \text{ for } k = 1, \dots, K\}$$

 \mathcal{P}_K is a polyhedron in \mathbb{R}^{m+1}

- Cutting plane method takes (u_{K+1}, θ_{K+1}) as point with lowest θ in \mathcal{P}_K , ...
- ... but this is unstable
- Instead, analytic center cutting plane method takes a 'central' point in $\mathcal{P}_{\mathcal{K}}$

Analytic Center

Analytic center of polyhedron

$$P = \{u : a_i^T u \leq b_i, i = 1, ..., m\}$$
:

$$AC(\mathcal{P}) = \operatorname{argmin}_{u} - \sum_{i=1}^{m} \log(b_{i} - a_{i}^{T}u)$$

ACCPM Algorithm

```
Given an initial polyhedron \mathcal{P}_0
k := 0
Repeat
     Compute u_{k+1} = AC(\mathcal{P}_k)
     Query cutting-plane oracle at u_{k+1}
     If u_{k+1} optimal, quit
     Else, add returned cutting-plane inequality to \mathcal{P}_k:
         \mathcal{P}_{k+1} := \mathcal{P}_k \cap \{\theta \geq g(u_k) + \pi_k^T (u - u_k)\}\
     If \mathcal{P}_{k+1} = \emptyset, quit
     k := k + 1
```

Stopping Criterion

Since ACCPM is not a descent method, we keep track of best point found, and best lower bound

- Best function value so far: $g_k^{\text{best}} = \min_{i=1,...,k} g(u_i)$
- Best lower bound so far: $\theta_k^{best} = \max_{i=1,...,k} \theta_i^*$
- ullet Can stop when $g_k^{ ext{best}} heta_k^{ ext{best}} \leq \epsilon$
- Guaranteed to be ϵ -suboptimal

Bundle Methods

Rationale of bundle methods:

- Choose a *stability center* \hat{u} , that we believe is near-optimal
- Because \hat{g} may be highly inaccurate ($\hat{g} \ll g$), minimizing \hat{g} may result in u_{K+1} very far from \hat{u}
- Idea: add quadratic stabilizing term $||u \hat{u}||^2$

Define

$$\ddot{g}(u) = \hat{g}(u) + \frac{1}{2t} ||u - \hat{u}||^2$$

and solve

$$(BP): \qquad \min_{\substack{(u,\theta) \in \mathbb{R}^{m+1}}} \theta + \frac{1}{2t} \|u - \hat{u}\|^2$$
$$\theta \ge g(u_k) + \pi_k^T (u - u_k), k = 1, \dots, K$$

Denote (u_{K+1}, θ_{K+1}) as *unique* optimal solution

Graphical Illustration

Small $t \Rightarrow$ small steps, large $t \Rightarrow$ large steps

Key quantities:

$$\delta := g(\hat{u}) - \hat{g}(u_{K+1})
\check{\delta} := g(\hat{u}) - \check{g}(u_{K+1}) = \delta - \frac{1}{2t} \|u_{K+1} - \hat{u}\|^2$$

Both are predictions of $g(\hat{u}) - g(u_{K+1})$

Stability Center Update

Consider the following condition:

$$g(u_{K+1}) \le g(u_K) - \kappa \delta \tag{2}$$

where κ is a fixed tolerance

Two possibilities:

- If (2) is true, descent step: set $\hat{u} := u_{K+1}$
- If (2) is not true, *null step*: do not change \hat{u} and update bundle with $(g(u_{K+1}), \pi_{K+1})$

Termination

Note:

$$0\in\partial\hat{g}(u_{K+1})+\frac{1}{t}(u_{K+1}-\hat{u})$$

so $\hat{\pi} \in \partial \hat{g}(u_{K+1})$ is computable as

$$\hat{\pi} = (\hat{u} - u_{K+1})/t$$

The following inequality is obtained, for any $u \in \mathbb{R}^m$:

$$g(u) \ge \hat{g}(u) \ge \hat{g}(u_{K+1}) + \hat{\pi}^T(u - u_{K+1})$$

= $g(\hat{u}) - \delta + \hat{\pi}^T(u - u_{K+1})$

Terminate when both δ and $\hat{\pi}$ are small

Bundle Method Algorithm

```
k:=0
Repeat
Compute u_{K+1} solving (BP)
If \delta and \hat{\pi} are sufficiently small, quit
If equation (2) is true, perform descent step, else perform null step
k:=k+1
```

Motivation of Level Method

Consider a level L_k , then the **level set** of \hat{g} is

$$\{u \in \mathbb{R}^m : \hat{g}(u) \leq L_k\}$$

Idea of level method: project current iterate u_k on

$$\{u: \hat{g}(u) \leq L_k\}$$

Justification:

- minimizer of \hat{g} can be highly unstable, but level set of \hat{g} is relatively stable
- projections are computationally "cheap"

Choosing Level Sets

Recall the following definitions:

$$g_k^{ ext{best}} = \min_{i=1,...k} g(u_i)$$

 $\theta_k^{ ext{best}} = \max_{i=1,...,k} \theta_i^{\star}$

and consider the following level set of \hat{g} , parametrized on λ :

$$L_k = \lambda g_k^{\mathsf{best}} + (1 - \lambda) \theta_k^{\mathsf{best}}$$

Consider two extremes:

- For $\lambda = 0$, algorithm makes no progress
- For $\lambda = 1$, algorithm reduces to cutting plane method

Graphical Interpretation

Level Set Algorithm

```
k := 0
Repeat
     Compute u_{k+1} by solving
                          \min \|u - u_k\|_2^2
                          g(u_i) + \pi_i^T(u - u_i) \ge L_k, i = 1, ..., k
     Add (g(u_{k+1}), \pi_{k+1}) to bundle, where \pi_{k+1} \in \partial g(u_{k+1})
     Update \theta_{k+1}^{\text{best}}, g_{k+1}^{\text{best}}
     If g_{k+1}^{\text{best}} - \theta_{k+1}^{\text{best}} < \epsilon, quit
     k := k + 1
```

Convergence Result

Denote

- L: Lipschitz constant of g
- R: diameter of domain of g
- c: a constant that depends only on λ of level method

To obtain a gap smaller than ϵ , it suffices to perform

$$M(\epsilon) \leq c(\frac{LD}{\epsilon})$$

iterations

Case Study

Unit commitment on Belgian power system:

- 62 generators (nuclear, gas, biomass, oil)
- Demand (2014) net of wind, solar, hydro

Three cases:

- Case 1: high demand
- Case 2: medium demand
- Case 3: low demand

Unit commitment problem

$$\min \sum_{i \in I} C_i(x_i)$$
 $x_i \in \mathcal{D}_i, i \in I$ $(u^t): \sum_{i \in I} c_i^t(x_i^t) \leq 0, t = 1, \dots, T$

Relax *complicating constraints* to obtain the following Lagrangian:

$$L(x, u) = \sum_{i \in I} (C_i(x_i) + \sum_{t=1}^{T} u^t c_i^t(x_i^t))$$

What have we gained? We can solve one problem per plant:

$$\min_{x_i \in \mathcal{D}_i} (C_i(x_i) + \sum_{t=1}^T u^t c_i^t(x_i^t))$$

Termination Criterion

	$\ u-u^\star\ _2$	$\ u-u^{\star}\ _{\infty}$	iter
	$\epsilon = 0.01$		
Level	10.0	4.8	19
ACCPM	20.7	6.1	38
	$\epsilon = 0.001$		
Level	8.3	4.7	33
ACCPM	8.8	3.7	192
	$\epsilon = 0.0005$		
Level	9.7	4.9	48
ACCPM	7.7	4.6	249

Table: Case 1

	$ u-u^{\star} _2$	$\ u-u^{\star}\ _{\infty}$	iter
	$\epsilon = 0.01$		
Level	6.8	3.4	22
ACCPM	16.9	6.7	52
	$\epsilon = 0.001$		
Level	3.2	1.2	49
ACCPM	6.4	2.2	211
	$\epsilon=0.0005$		
Level	3.1	1.4	36
ACCPM	5.8	1.9	253

Table: Case 2

	$ u-u^{\star} _2$	$\ u-u^{\star}\ _{\infty}$	iter
	$\epsilon = 0.01$		
Level	7.5	3.2	19
ACCPM	17.7	6.7	54
	$\epsilon = 0.001$		
Level	1.7	0.8	45
ACCPM	5.4	2.1	240
	$\epsilon = 0.0005$		
Level	1.9	1.0	57
ACCPM	3.8	1.3	284

Table: Case 3

Prices

Figure: Prices for $\epsilon = 0.01$

Figure: Prices for $\epsilon = 0.001$

Figure: Prices for $\epsilon = 0.0005$

Observations

Conclusions:

- Level method converges in fewer iterations
- Dual multipliers that achieve target ϵ are too unstable for $\epsilon=0.01$, very stable for $\epsilon=0.0005$

Parameter Tuning for the Level Method

Recall the trade-off in tuning λ for the level method:

- For $\lambda = 0$, algorithm makes no progress
- For $\lambda = 1$, algorithm reduces to cutting plane method

We want to find a suitable intermediate value

Figure: Required iterations for horizon of 2, 5, 24 and 72 periods. Note $\alpha = 1 - \lambda$.

Intuitive result: Cutting plane method works well only in low dimensions

Figure: Level method performance for two different shapes of demand curves for 72 period horizon

Conclusion: pick $\alpha = 1 - \lambda = 0.2$

Convergence Behavior

Figure: Convergence on 72-period instance

Volatility of the Iterate Sequence

Figure: Box plots of iterates on 72-period instance, low demand (case 1)

Figure: Box plots of iterates on 72-period instance, medium demand (case 2)

Figure: Box plots of iterates on 72-period instance, high demand (case 3)

Conclusions of Numerical Analysis

Level method and ACCPM dominate subgradient and cutting plane method in terms of

- convergence rate
- volatility of iterates

in large-scale problems

Table of Contents

- Contex
- 2 Dual Function Optimization Algorithms
 - Subgradient Method
 - Cutting Plane Algorithm
 - Bundle Methods
 - Level Method
 - Numerical Comparison
- 3 Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers

ADMM problem form (with f, ϕ convex)

$$\min f(x) + \phi(z)$$

s.t. $Ax + Bz = c$

Two sets of variables, with separable objective Augmented Lagrangian:

$$L_{\rho}(x, z, \nu) = f(x) + \phi(z) + \nu^{T} (Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_{2}^{2}$$

ADMM:

- *x*-minimization: $x_{k+1} = \operatorname{argmin}_x L_{\rho}(x, z_k, \nu_k)$
- z-minimization: $z_{k+1} = \operatorname{argmin}_z L_\rho(x_{k+1}, z, \nu_k)$
- Dual update: $\nu_{k+1} = \nu_k + \rho(Ax_{k+1} + Bz_{k+1} c)$

ADMM and Optimality Conditions

Optimality conditions (for differentiable case):

- Primal feasibility: Ax + Bz c = 0
- Dual feasibility: $\nabla f(x) + A^T \nu = 0$, $\nabla g(z) + B^T \nu = 0$

Since z_{k+1} minimizes $L_{\rho}(x_{k+1}, z, \nu_k)$ we have

$$0 = \nabla g(z_{k+1}) + B^{T} \nu_{k} + \rho B^{T} (Ax_{k+1} + Bz_{k+1} - c)$$

= $\nabla g(z_{k+1}) + B^{T} \nu_{k+1}$

So with ADMM dual variable update, $(x_{k+1}, z_{k+1}, y_{k+1})$ satisfies second dual feasibility condition

Primal and first dual feasibility condition are achieved as $k \to \infty$

Convergence

Assume (very little):

- f, g convex, closed, proper
- L₀ has a saddle point

Then ADMM converges:

- iterates approach feasibility: $Ax_k + Bz_k c \rightarrow 0$
- Objective approaches optimal value: $f(x_k) + \phi(x_k) \rightarrow p^*$