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Notations

A A matrix, usually of size m× n unless stated otherwise.
Aij The (i, j) entry of the matrix A.
AT The transpose of the matrix A.
A∗ The hermitian of the matrix A (conjugate transpose).
Tr(A) The trace of a square matrix A ∈ Cn×n, defined by Tr(A) := ∑N

i=1Aii.
diag(A) The vector composed of A’s diagonal elements, if A ∈ Cn×n, diag(A) ∈ Cn.
A � 0 The hermitian matrix A ∈ Cn×n is positive semi-definite, i.e zTAz ≥ 0, ∀z ∈ Cn.
I The identity matrix.
0 The zero matrix, all its entries are zero.
Re{z} The real part of the complex number z.
Im{z} The imaginary part of the complex number z.
|z| Magnitude of the complex number z.
∠z Argument of the complex number z.
x = y Two complex numbers are equal if and only if both their real and imaginary parts are equal.
〈x, y〉 The inner product of two matrices (vectors), x, y ∈ Cm×n, defined by Re

{
Tr(x∗y)

}
.

‖x‖2 The norm of a matrix (vector) x ∈ Cm×n is defined as
√
〈x, x〉.

|N | The cardinality of the set N , i.e. the number of elements of the set N .
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Introduction

The optimal power flow (OPF) problem is fundamental in power system operations and planning
because it underlies many applications such as economic dispatch, unit commitment, state estimation,
volt/var control, demand response, etc. This problem seeks to control power generation/demand to
optimise certain objectives such as minimising the generation cost or power loss in the network, subject
to power flow equations and operational constraints. This optimisation problem has been extensively
studied since Carpentier’s first formulation in 1962 [Car62]. Numerous algorithms have been proposed
for solving this highly non-convex problem, including linear programming, quadratic programming,
nonlinear programming, interior point methods, neural networks, fuzzy logic, genetic algorithms, etc.

It’s becoming increasingly important for distribution networks due to the emergence of high penetra-
tion of distributed generation and controllable loads such as electric vehicles. This continued growth of
highly volatile renewable sources on distribution systems calls for real-time feedback control. Solving
the OPF problems in such environment has at least two challenges :

• First, the exact solution to the OPF problem is very difficult (NP-hard) to obtain for general
networks due to its non-convex constraints, namely magnitude constraints on complex-valued
bus voltages, and non-linear equality constraints corresponding to Kirchhoff’s Laws which govern
power flows in electrical networks. There are generally three ways to tackle the non-convexity:
(i) use linear approximations of the power flow equations; (ii) employ nonlinear solver to find
local optimum; (iii) exploit convex relaxations of the non-convex constraints. After a short
discussion about the first two approaches, the rest of this paper will be focused on the third.

• Secondly, most algorithms in the literature are centralised and meant for applications in to-
day’s energy management systems (central schedule of a relatively small number of generators).
However, in future, the growing number of controllable devices will make a central approach
impracticable because of its computation cost. In this thesis, a fully decentralised algorithm
able to solve the OPF problem is proposed. Through optimisation decomposition, the original
OPF problem is decomposed into several local subproblems that can be solved simultaneously.

Due to these challenges, the current practice in the electricity industry is to use the so-called DC-OPF
approximation. In contrast, the original non-convex OPF is usually called the AC-OPF (alternating
current). DC-OPF uses a linearization of AC-OPF by exploiting some physical properties of the
power flows in typical power systems, such as tight bounds on voltage magnitudes at buses and small
voltage angle differences between buses. However, such an approximation completely ignores important
aspects of power flow physics, such as the reactive power and voltage magnitude. To partially remedy
this drawback, the current practice is to solve the DC-OPF problem and then to solve a set of power
flow equations with the DC-OPF solution to compute feasible reactive powers and voltages. However,
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it is clear such an approach cannot guarantee any optimality of the AC power flow solution obtained.
The rest of this paper will be focused on the convex relaxations of the non-convex constraints of
AC-OPF, hereafter denoted by OPF. The structure of this thesis is the following:

• The first part focuses on recent advances in the convex relaxation of the optimal power flow
problem in the special case of distribution networks. Most of those works assume a single-
phase network while distribution networks are typically multiphase and unbalanced [Ker01b].
Although the single-phase formulations will not be directly used in the sequel, it provides some
useful background for the understanding of the multi-phase formulation.

• The second part of this thesis is dedicated to the elaboration of a decentralised algorithm based
on the alternating direction method of multipliers (ADMM), briefly described. Unlike existing
approaches, the problem structure is exploited in order to decompose the OPF problem in such
a way that the subproblems at each iteration reduce to either a closed-form solution or an eigen-
decomposition of a 6 × 6 hermitian matrix; which significantly reduce the computational time.
Moreover, since the method is completely decentralized, and needs no global coordination other
than synchronizing iterations, the problem can be solved extremely efficiently in parallel.

• In the third part of this thesis, we demonstrate the effectiveness of the algorithm by testing it on
made-up networks and real distribution networks. Specially, we show that the proposed convex
relaxation of the optimal power flow problem is generally exact for the IEEE test feeders.

• Finally, we briefly review the main results presented in this work and discuss some directions
for future research (Local Stopping Criteria, fast ADMM, multi-step programming).
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Part I

Formulation of the Optimal Power
Flow Problem
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1 | The OPF Problem on Single-Phase
Distribution Networks

In this chapter, we describe the formulation of the constraints which govern power flows in electrical
networks in the case of single-phase distribution networks. We show that two different models can be
used to formulate the OPF problem, namely the bus injection model and the branch flow model. In
particular, the tow formulations are showed to be strictly equivalent.

It’s interesting to consider both models because some relaxations are much easier to formulate in one
model than the other. For instance, the semidefinite relaxation has a much cleaner formulation in
the bus injection model. Whereas the branch flow model has a convenient recursive structure that
allow a more efficient computation [CB90]. Moreover, it also play a crucial role in proving sufficient
conditions for the exactness of the convex relaxation (see e.g.[GLTL12]).

1.1 Bus Injection Model

The bus injection model aims at formulating the OPF problem according to nodal variables, such as the
voltage and the net power injection (generation minus load). In this section, we describe two different
relaxations, a semidefinite relaxation and a second-order cone relaxation of the OPF problem [Low13].
We show the equivalence of those two relaxations and point out that in case of radial networks, one
should always use the second-order cone relaxation [BLTH14].

1.1.1 Formulation of the OPF problem

A distribution network is composed of buses and branches connecting these buses. Moreover, it’s
assumed to be radial, i.e. has a tree topology. The root is called the substation node and holds the
responsibility for drawing the power from the the transmission network to the distribution network
for power balance. The substation bus is indexed by 0 and the others buses from 1 to n. Let’s denote
N the set of all buses and N+ the set of all buses except the substation node. The set of all lines is
E . We say that (i, j) ∈ E if i→ j. And if i→ j, or i→ j, then i ∼ j, otherwise i � j.

For each line in the network (i, j) ∈ E , let yij = gij − ibij denote its admittance and zij = rij + ixij its
impedance such that yijzij = 1. For each bus i ∈ N , let Vi denote its voltage and Ii denote its current
injection. A bus i ∈ N can have a generator, a load, both or neither. The spot loads are specified and
the generations are variables to be determined. Let si = pi + iqi denote the power injection at node i
where pi and qi are the active and reactive power injections respectively (generation minus load). The
substation node is assumed to have a fixed voltage and a flexible power injection. A letter without
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Chapter 1. The OPF Problem on Single-Phase Distribution Networks

subscript denotes a vector of the corresponding quantity, e.g. V = (V1, . . . , Vn)T .

Given a network (N , E), the admittances y and the substation voltage V0, the other variables (s, V, I, s0)
must satisfy the following constraints :

• Current balance and Ohm’s law :

Ii =
∑

j:j∼i

(
Vi − Vj

)
yij ∀i ∈ N

• Power Balance :
si = ViI

∗
i ∀i ∈ N

Those two sets of equations can be combined to get rid off the variables Ii.

si = Vi

∑
j:j∼i

(
V ∗

i − V ∗
j

)
y∗

ij ∀i ∈ N (1.1)

(1.1) is referred as the power flow equations. For each bus i ∈ N , there are two operational constraints.
First, the constraint on the net power injection si can be captured by some feasible power injection
set Ii, such that si ∈ Ii. A common set is for example:

I1 :=
{
p+ iq ∈ C | pi ≤ p ≤ p̄i, qi ≤ q ≤ q̄i,

}
In that case, if we combine these constraints with (1.1), we obtain :

si ≤ Vi

∑
j:j∼i

(
V ∗

i − V ∗
j

)
y∗

ij ≤ s̄i ∀i ∈ N (1.2)

It’s usually assumed that there is no limit on the power injection at the substation node, i.e. −s0 =
s̄0 = +∞. However, such assumption is not essential to our model. Secondly, the voltage magnitude
needs to be maintained within a predefined range. This is captured by specifying lower and upper
bounds on the voltage magnitude, i.e.

Vi ≤ |Vi| ≤ V̄i ∀i ∈ N (1.3)

It’s common practice to allow a 5% voltage deviation from the nominal value V ref
0 . Since the voltage

at the substation node is assumed to be fixed at the nominal value, V0 = V̄0 = V ref
0 .

The constraints (1.3), (1.2) define a feasible set of the optimal power flow problem :

V :=
{
V | V satisfies (1.3) and (1.2)

}
Besides the enforcement of the aforementioned constraints, the optimal power flow aims at minimising
an objective function. Typical objective functions include generation cost or total power loss. Here-
after, We assume there exists for each node i ∈ N , a real-valued function fi (si) defined on R which
represents the local objective of node i. Notice that those functions depend only on the power injection
si since the power loss and the generation cost can be expressed using only the power injection. Then
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Chapter 1. The OPF Problem on Single-Phase Distribution Networks

the total objective function is given by

C(s, s0) =
∑
i∈N

fi
(
Re{si}

)
Since the power injection can be expressed in terms of the voltage V . The cost function C is in reality
a function of the voltage V . For exemple, if we want to minimize the real power loss :

C(V ) =
∑
i∈N

Re{si} =
∑
i∈N

∑
j:i∼j

Re
{
Vi

(
V ∗

i − V ∗
j

)
y∗

ij

}

The OPF problem in the bus injection model can be formulated using the aforementioned constraints
and objective function.

BIM-OPF : min
V

C(V ) (1.4a)

s.t. V ∈ V (1.4b)

1.1.2 Convex Relaxation of The OPF Problem

Since the functions fi are usually assumed to be convex, the challenge in solving the OPF problem
comes from the non-convex quadratic equality constraints (1.1). In this subsection, we describe a
convex relaxation of the optimal power flow problem. To do so, we enlarge the feasible set of OPF to
a convex set and characterise it in terms of partial matrices. These characterisations lead naturally
to an SDP and SOCP relaxation of the OPF problem.

Mathematical Tools

Fix an undirected graph G = (N , E). A G-partial matrix XG (or a partial matrix if G is clear from
the context), is a collection of complex numbers such that

XG :=
(
[XG]ii ∈ C ∀i ∈ N , [XG]ij ∈ C ∀(i, j) ∈ E

)
One can treat a partial matrix XG as entries of an n×n matrix X whose entries Xij are unspecified if
(i, j) /∈ E . Given a partial matrix XG, we call an n×n matrix X, a completion of XG if Xii = [XG]ii,
i ∈ N and Xij = [XG]ij , (i, j) ∈ E , i.e. X agrees with XG on G.

Consider any n × n matrix X. Given k ≤ n nodes, let X(n1, . . . , nk) denote the k × k principal sub
matrix of X defined by:

[X(n1, . . . , nk)]ij := Xij ∀i, j ∈ {n1, . . . , nk}

In particular, any maximal clique q = (n1, . . . , nk) of G with k nodes defines a fully specified k × k
principal sub-matrix denoted by X(q). Figure (1.1) shows an example of a partial matrix and a prin-
cipal sub-matrix.
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1

2

4 5

3

1 2 3 4 5
1 X X X 7 7

2 X X 7 X X

3 X 7 X 7 7

4 7 X 7 X 7

5 7 X 7 7 X

1 3
1 X X

3 X X

Figure 1.1: Example of a partial matrix WG (center) associated with the graph G (left). The matrix on the
right is the principal submatrix WG (C) for the clique C := {1, 3}.

We can extend the notion of hermitian to partial matrices. We say a partial matrix WG is hermitian,
denoted by XG = X∗

G, if [XG]ii = [XG]∗ii, i ∈ N and [XG]ij = [XG]∗ji, ∀(i, j) ∈ E . The extension of the
notion of positive-semidefinite (psd) and rank-1 matrices will be explained later.

SDP Relaxation

Let’s Define a partial matrix WG such that

[WG]ij = ViV
∗

j i ∼ j or i = j

The constraints of the OPF problem (1.2), (1.3) can be rewritten in terms of the partial matrix WG

si ≤
∑

j:j∼i

(
[WG]ii − [WG]ij

)
y∗

ij ≤ s̄i ∀i ∈ N (1.5a)

V2
i ≤ [WG]ii ≤ V̄ 2

i ∀i ∈ N (1.5b)

It’s clear that any completion W of WG would also satisfy the constraints (1.5a)-(1.5b), since yij = 0,
if (i, j) /∈ E . Moreover if W = V V ∗, with V a voltage vector, then W must obviously be a rank-1
matrix but also positive-semidefinite. Indeed, by definition, a matrix W ∈ Cn×n is psd if ∀x ∈ Cn,

x∗Mx ≥ 0

if W = V V ∗, then x∗Mx = (V ∗x)∗ (V ∗x) ≥ 0.

The OPF problem can be rewritten in terms of a n × n Hermitian matrix W and its partial matrix
WG defined on G.

Problem P1 min
W

C(WG) (1.6a)

s.t. WG satisfy (1.5a) and (1.5b) (1.6b)

W � 0, rank W = 1 (1.6c)

Given V ∈ V, W = V V ∗ is feasible for P1. In the same way, if W is feasible for P1, then it has
a unique spectral decomposition W = V V ∗ with V ∈ V. Problem P1 is therefore equivalent to the
OPF problem. Unfortunately P1 is an rank-constrained SDP and then hard to solve (NP-hard). The
non-convex rank constraint can be relaxed to obtain the following SDP relaxation :

8
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Problem R1 min
W

C(WG) (1.7a)

s.t. WG satisfy (1.5a) and (1.5b) (1.7b)

W � 0 (1.7c)

This relaxation can be solved in polynomial time using for example an interior point method. Denote
W ?, an optimal solution of R1. If W ? is rank-1 then it also solves P1. We say the relaxation R1 is
exact with respect to P1 if there exists an optimal solution of R1 that satisfies the rank constraint in
P1. Notice that if the relaxation R1 has multiple solutions, we say that the relaxation is exact as long
as there exists at least one rank-1 solution of R1.

SOCP relaxation

Instead of working with a completion matrix W of WG, we would like to seek additional conditions on
the partial matrix that guarantee that it has a psd rank-1 completion W from which a voltage vector
V can be recovered.

To this end, we need to extend the notion of psd to partial matrices. Denote by W (K) a principal
sub-matrix of an n×n matrix W for a set K ⊆ {1, . . . , n} containing the rows and columns considered
in the sub-matrix is given by:

W (K) := PK W P T
K

where PK is a diagonal matrix where the rows and columns not contained in K have been removed.
For instance, K = {1, 2, 4},

WK = PK W P T
K =


1 0 0 0

0 1 0 0

0 0 0 1





1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16





1 0 0

0 1 0

0 0 0

0 0 1


=


1 2 4

5 6 8

13 14 16



Let’s show that a n × n matrix W is psd if and only of all its principal sub-matrices (including W

itself) are psd. By definition, W is a psd matrix if for all vector x ∈ Cn, 0 ≤ x∗Wx. Expressed in
terms of the partial matrix W (K), we get :

x∗Wx = x∗ P T
K W (K) PK x = (PK x)∗ W (K) (PK x) = y∗ W (K) y ≥ 0

This result holds for every y ∈ C|K| since y can always be expressed as PK x with x ∈ Cn and for every
partition K ⊆ {1, . . . , n}.

Thanks to this result, we extend the notion of psd to partial matrices. A partial matrix is psd if all
its "principal sub-matrices" that are fully specified are psd. Formally, WG is psd, denoted by WG � 0,
if WG(C) � 0 for all clique C of G. In the same way, we say that a partial matrix is rank-1 if XG(C)
is rank-1 for all maximal clique C of G. Notice that for a tree, the maximal cardinality of a clique is
two, otherwise there would be cycles in the graph. Therefore all the principal sub-matrices of a radial
network are 2× 2 matrices.

9
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We say that a partial matrix WG satisfies the cycle condition if, for every cycle in G,

∑
(i,j)∈ Cycle

∠[WG]ij = 0 (1.8)

The following theorem characterises when a definite matrix W is rank-1 in terms of its restriction on
G, i.e. the partial matrix WG (proof available in [SLC12]).

Theorem 1. Fix a graph G on n nodes. Given an n× n positive or negative semidefinite matrix W ,
the following are equivalent:

1. rank W = 1

2. rank WG(i, j) = 1 for all (i, j) ∈ E and the partial matrix WG satisfies the cycle condition (1.8).

The rank condition is a property for the whole matrix W . Theorem 1 characterises this condition in
terms of the partial matrix WG, defined on the graph G. This is important because WG is typically
much smaller than W and can be much more efficiently computed for large sparse networks. Note
also that for radial networks, the cycle condition always holds since there is no cycle in a tree.

As we now explain, theorem 1 allows us to solve simpler problems in terms of partial matrices. For
any e = (i, j) ∈ E , let’s define WG(e) as the 2× 2 principal sub-matrix of WG defined by the clique e.

Problem P2 min
WG

C(WG) (1.9a)

s.t. WG satisfy (1.5a), (1.5b) and (1.8) (1.9b)

WG(e) � 0, rank WG(e) = 1 ∀e ∈ E (1.9c)

Fortunately, the cycle condition always holds for radial networks. Nevertheless, the problem still re-
mains non-convex due to the rank constraint. If we relax it, we obtain the following relaxation :

Problem R2 min
WG

C(WG) (1.10a)

s.t. WG satisfy (1.5a) and (1.5b) (1.10b)

WG(e) � 0 ∀e ∈ E (1.10c)

Moreover ∀e = (i, j) ∈ E , and for an Hermitian matrix WG, the condition WG(e) � 0 can be reformu-
lated using the Sylvester’s Criterion for hermitian matrices :

0 �WG(e) =

[WG]ii [WG]ij
[WG]∗ij [WG]jj

 ⇐⇒

 [WG]ii ≥ 0, [WG]jj ≥ 0

[WG]ii [WG]jj ≥ |[WG]ij |2

This is a second-order cone constraint, and hence the problem (1.10) can be solved as an SOCP. If
an optimal solution of R2 satisfies that WG(e) is rank-1 for all e ∈ E , then the relaxation is said to be
exact with respect to P2.

10



Chapter 1. The OPF Problem on Single-Phase Distribution Networks

Equivalence of the two relaxations

The following corollary links the two formulations in terms of the optimal value of their objective
function [Low13].

Corollary 1.1. Let C∗, Csdp, Csocp be the optimal values of OPF, R1 (SDP relaxation) and R2 (SOCP
relaxation) respectively.

1. If G is radial, then C∗ ≥ Csdp = Csocp

2. If G has cycles, then C∗ ≥ Csdp ≥ Csocp

Indeed, for mesh networks, the SOCP relaxation requires the relaxation of both the cycle condition
and the rank constraint whereas the SDP relaxation only requires the relaxation of the rank con-
straint. Therefore, since the feasible set of the SOCP relaxation is larger than the feasible set of the
SDP relaxation, we get that Csdp ≥ Csocp.

In the special case of radial networks, the cycle condition always holds, and the two formulations
relaxe the same rank constraint. Hence, they are strictly equivalent for radial networks, and we obtain
that Csdp = Csocp.

Computational aspect

Although R1 (SDP) and R2 (SOCP) are convex and hence can be solved in polynomial time, SOCP
usually requires a much smaller computational effort than SDP for large sparse networks, like distri-
bution networks. Indeed, G is a subgraph of the complete graph defined on N , and hence the number
of complex variables is the smallest in R2 (|WG|) and the largest in R1 (|N |2).

Most importantly, corollary 1.1 suggests that, when G is a tree, we should always solve the SOCP
formulation. When G has cycles, there is a tradeoff between computational effort and exactness in
deciding between solving the SOCP or the SDP formulation.

1.1.3 How to recover the voltage vector

Consider the optimization problem P1 (1.6), so that any optimal solution W ? is a psd rank-1 matrix.
We can show that we can recover a voltage vector V ? from W ?. This voltage vector is unique and an
optimal solution of BIM-OPF(1.4).

It’s straightforward that for any V ∈ V, the point ψ(V ) = W = V V ∗ is feasible for (1.6). It remains
to prove that the map ψ is bijective, i.e injective and surjective.

Injective: Let’s define the two voltage vectors V and V ′. if ψ(V ) = ψ(V ′) then ViV
∗

j = V ′
i V

′∗
j for

i ∼ j. Hence, Vi = V ′
i implies Vj = V ′

j if i ∼ j. But since V0 = V ′
0 and the network is connected,

V = V ′.

Surjective: We can prove that for any feasible solution W of (1.6), there exists a V such that
Wij = ViV

∗
j for i = j and i ∼ j. Such V is given by :

11
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Vi =
√
Wii exp

i
∠V0 −

∑
(j,k)∈Pi

∠Wjk


 ∀i ∈ N (1.11)

where Pi denotes the unique path form the substation bus 0 to the bus i. It’s not difficult to
verify that such V satisfies ψ(V ) = W , which complete the proof.

If the relaxation R2 doesn’t yield an exact solution of BIM-OPF (1.6), i.e. the optimal solution W

of R2 is not a rank-1 matrix, the aforementioned recovering algorithm doesn’t apply. To partially
remedy this drawback, a solution could be to project the solution W onto its closest rank-1 matrix W̃
defined by

W̃ := U1: Σ11 V
∗

1:

where the matrix U and V are unitary matrices coming from the singular value decomposition of
W . Σ is a diagonal matrix containing the singular values in descending order. Then a voltage vector
V can be recovered from W̃ using formula (1.11). Although such solution is not guaranteed to be
feasible for (1.4), i.e. V /∈ V, we can employ a nonlinear solver with V as starting point to find a local
optimum of the BIM-OPF problem. However, it is clear that such approach cannot guarantee any
global optimality.

1.2 Branch Flow Model

The branch Flow Model (BFM) focuses on both nodal variables and branch variables such as the
current and the power on the branches. It has received far less attention than the Bus Injection Model,
and has been used mainly for the analysis of distribution networks because of its convenient recursive
structure. Nevertheless, it plays an important role in proving sufficient conditions for efficient recovery
of the optimal solution of the OPF problem from its convex relaxations. Moreover, the variables in
the BFM correspond to physical quantities such as the branch power and current, which can be more
convenient depending on the application.

1.2.1 Formulation of the OPF problem

The BFM of [FL12] adopts a directed connected graph G := (N , E) to represent a power network
where each node in N represents a bus and each edge e ∈ E represents a line connecting two buses.
The orientations of the edges are arbitrary.

As before, denote Vi as the complex voltage at node i ∈ N , si as the net power injection (generation
minus load) at node i ∈ N . For each edge e = (i, j) ∈ E , let zij be the complex impedance on the line
(i, j), let Iij be the complex current from node i to j, and Sij = Pij + iQij the sending-end complex
power from buses i to j, where Pij is the active power and Qij is the reactive power.

12
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The Branch flow model is defined by the following set of equations :

Vi − Vj = zijIij ∀(i, j) ∈ E (1.12a)

Sij = Vi I
∗
ij ∀(i, j) ∈ E (1.12b)

sj =
∑

k:j→k

Sjk −
∑

i:i→j

(
Sij − zij |Iij |2

)
∀j ∈ N (1.12c)

where (1.12a) describes Ohm’s Law, (1.12b) the branch power and (1.12c) the power balance. And
where zij |Iij |2 represents the line loss so that Sij − zij |Iij |2 is the receiving-end complex power at bus
j from i. The power injection sj must satisfy :

sj ≤ sj ≤ s̄j ∀j ∈ N (1.13)

where sj and s̄j are limits on the net power injection at node j. Note that we assume there is no limit
on the net power injection at the substation node for power balance, i.e. −s0 = s̄0 = +∞. We can
combine these constraints with the power balance constraints (1.12c) :

sj ≤
∑

k:j→k

Sjk −
∑

i:i→j

(
Sij − zij |Iij |2

)
≤ s̄j ∀j ∈ N (1.14)

Finally, the voltage magnitude must be contained within a predefined range :

Vj ≤ Vj ≤ V̄j ∀j ∈ N (1.15)

where Vj and V̄j are given. And as in the bus injection model, the voltage of the substation node
is fixed at a given value, i.e. V0 = V̄0 = V ref

0 . Denote x := (S, I, V ) ∈ C3|N |−2 the variables of the
Branch Flow Model.

The objective function C of the OPF problem can be expressed in terms of x. For example, if we want
to minimize the total power loss :

C(x) =
∑
j∈N

Re
{
sj
}

=
∑
j∈N

Re

 ∑
k:j→k

Sjk −
∑

i:i→j

(
Sij − zij |Iij |2

)
.
The OPF problem can be written in the Branch Flow model by :

BFM-OPF min
x

C(x) (1.16a)

s.t. x satisfies (1.12a), (1.12b), (1.14), and (1.15) (1.16b)

Since (1.12c) are quadratic equality constraints, the feasible set is generally non-convex. And the OPF
is as before a non-convex problem.

1.2.2 Convex Relaxation of the OPF Problem

An SOCP relaxation of (1.16) is developed in [FL12]. It consists of two steps. Firstly, we transform
(1.12a) and (1.12b) in order to remove the phase angles from the complex voltages V and currents I.

13
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Ohm’s law can be transformed into

Vj = Vi − zijIij ∀(i, j) ∈ E

VjV
∗

j =
(
Vi − zijIij

) (
Vi − zijIij

)∗ ∀(i, j) ∈ E

vj = vi − ViI
∗
ijz

∗
ij − zijIijV

∗
i + zijIijI

∗
ijz

∗
ij ∀(i, j) ∈ E

vj = vi − Sijz
∗
ij − zijS

∗
ij + zijlijz

∗
ij ∀(i, j) ∈ E

vj = vi − 2 Re
{
z∗

ijSij

}
+ zijlijz

∗
ij ∀(i, j) ∈ E (1.17)

where we define lij = Iij I
∗
ij , ∀(i, j) ∈ E , and vi = ViV

∗
i , ∀i ∈ N . The constraints (1.12b) can be

transformed into

Sij = Vi I
∗
ij ∀(i, j) ∈ E

SijS
∗
ij = Vi I

∗
ijIij V

∗
i ∀(i, j) ∈ E

|Sij |2 = vilij ∀(i, j) ∈ E (1.18)

The quadratic equalities (1.18) are still non-convex; but we can relax them to inequalities:

|Sij |2 ≤ vilij ∀(i, j) ∈ E (1.19)

Let x := (S, l, v) denote the new variables of the optimal power flow problem. From these develop-
ments, we can define two following relaxations (non-convex and convex):

Problem Rnc
BF M min

x
C(x) (1.20a)

s.t. x satisfies (1.14), (1.15), (1.17), and (1.18) (1.20b)

Problem RBF M min
x

C(x) (1.21a)

s.t. x satisfies (1.14), (1.15), (1.17), and (1.19) (1.21b)

Where (1.20) is non-convex and (1.21) is convex. Note that the relaxation (1.21) is an SOCP. Indeed,
the set of constraints (1.19) can be reformulated using a second-order cone ∀(i, j) ∈ E :∥∥∥∥∥∥∥∥∥∥

2Pij

2Qij

lij − vi

∥∥∥∥∥∥∥∥∥∥
2

≤ lij + vi ⇐⇒

√
4P 2

ij + 4Q2
ij +

(
lij − vi

)2 ≤ lij + vi

4P 2
ij + 4Q2

ij +
(
lij − vi

)2 ≤ (lij + vi
)2

|Sij |2 = P 2
ij +Q2

ij ≤ lijvi

where Pij and Qij are the active and reactive power respectively along the line (i, j) ∈ E . Thus the
relaxation RBF M problem can be efficiently computed.
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1.2.3 Exactness of the relaxation

Whether the solution of the SOCP relaxation (1.21) yields an optimal solution for BFM-OPF depends
on two factors :

• Whether the solution of (1.21) satisfies the equality constraint (1.18).

• Whether the phase angles of V and I can be recovered from such a solution.

Only the second issue is discussed here. The first issue will be investigated in the next section.

Angle Recovering Algorithm

The condition under which the recovery of the phase angles is described in [FL12], theorem 2. Here,
we briefly introduce the recovering algorithm.

For a vector θ ∈ [−π, π)n, let’s define the mapping fθ (S, `, v) = (S, I, V ) where :

Vi := √vi exp(iθi) for i ∈ N

Iij :=
√
`ij exp

(
i
(
θi − ∠Sij

))
for (i, j) ∈ E

θi can be interpreted as the phase of the voltage at node i ∈ N . The goal is then to find θ such that
if x := (S, l, v) is optimal for (1.20), fθ (x) is optimal for the OPF problem. Whether such θ exists
depends on the topology of the network. Let’s define β(x) ∈ R|E| by

βij(x) := ∠
(
vi − z∗

ijSij

)
∀(i, j) ∈ E

which is the phase angle difference across each line i → j ∈ E . Then the system simply consists of
finding a vector θ such that θi − θj = βij(x). Let’s define the |N | × |E| incidence matrix C of the
graph G :

Cie :=


1 if edge e ∈ E leaves node i ∈ N

−1 if edge e ∈ E enters node i ∈ N

0 Otherwise

The first row of C correspond the the substation node. Let’s define the reduced matrix B obtained
by removing the first row of C and taking its transpose. The condition under which we can recover
the phase angles is then

∃ θ that solves Bθ = β(x) mod 2π (1.22)

If such solution exist, it’s unique in [−π, π)n. Moreover the condition for the existence of a solution
to (1.22) has a simple interpretation : The voltage angle differences βij(x) must sum to zero (mode
2π) around any cycle (see [FL12] for further explanations). In the special case of radial networks, the
cycle condition always holds. Hence the recovering of the phase angles can be computed by solving
the system (1.22).
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1.3 Exactness and Equivalence of the Two Models

For radial networks, it has been shown that one should always solve the second-order cone relaxation
in the bus injection model and in the branch flow model. In this section, we show there exists a
bijection between the feasible set of the OPF in the bus injection model and in the branch flow model,
establishing the equivalence of theses models and their second-order cone relaxations. Then we briefly
discuss the conditions under which the SOCP relaxations are exact.

1.3.1 Equivalence of the SOCP relaxations

Recall that the two SOCP relaxations of the optimal power flow problem in the bus injection model
(1.23) and in the branch flow model (1.24) are given by:

BIM-SOCP

min C(WG) (1.23a)

over WG

s.t. si =
∑

j:j∼i

(
[WG]ii − [WG]ij

)
y∗

ij ∀j ∈ N (1.23b)

sj ≤ sj ≤ s̄j ∀j ∈ N (1.23c)

Vj ≤ [WG]jj ≤ V̄j ∀j ∈ N (1.23d)

[WG]ii [WG]jj ≥ |[WG]ij |2 ∀(i, j) ∈ E (1.23e)

BFM-SOCP

min C(S, l, v, s) (1.24a)

over S, l, v, s

s.t. vj = vi − 2 Re
{
z∗

ijSij

}
+ zijlijz

∗
ij ∀(i, j) ∈ E (1.24b)

sj +
∑

i:i→j

(
Sij − zij |Iij |2

)
=

∑
k:j→k

Sjk ∀j ∈ N (1.24c)

Vj ≤ Vj ≤ V̄j ∀j ∈ N (1.24d)

sj ≤ sj ≤ s̄j ∀j ∈ N (1.24e)

|Sij |2 ≤ vilij ∀(i, j) ∈ E (1.24f)

For a hermitian partial matrix WG defined on the graph G, define the vector x := (S, l, v) ∈ R3|N |−2

such that x = (S, l, v) =: g (WG). The mapping function g is given for i ∈ N and for (i, j) ∈ E by

g (WG) :=



vi := ViV
∗

i = [WG]ii
Sij := ViI

∗
ij = Vi

(
Vi − Vj

)∗
y∗

ij = y∗
ij

(
[WG]ii − [WG]ij

)
lij := IijI

∗
ij = yij

(
Vi − Vj

) (
Vi − Vj

)∗
y∗

ij

= |yij |2
(
[WG]ii − [WG]ij − [WG]ji + [WG]jj

)
And the inverse mapping g−1 from R3|N |−2 to the set of Hermitian G-partial matrix is defined such
that g−1(x) := WG.
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g−1(x) :=

 [WG]ii := vi

[WG]ij := vi − z∗
ijSij = [WG]∗ji

Using this mapping function g, we can show that the constraints in one model can be expressed in
terms of the variables in the other model. By doing so, we end up with the constraints of the other
model, and which proves that the feasible set of two formulations are equivalent.

From the definition of (S, `, v) in terms of the G-partial matrix WG, we can easily verified that:

vj = vi − 2 Re
{
z∗

ijSij

}
+ |zij |2`ij ∀(i, j) ∈ E

The power flow constraints can be transformed for i ∈ N :

si =
∑

j:i∼j

(
[WG]ii − [WG]ij

)
y∗

ij

=
∑

j:i→j

(
[WG]ii − [WG]ij

)
y∗

ij +
∑

k:k→i

(
[WG]ii − [WG]ik

)
y∗

ik

=
∑

j:i→j

Sij +
∑

k:k→i

(
|zki|2lki −

(
[WG]kk − [WG]ki

))
y∗

ki

=
∑

j:i→j

Sij +
∑

k:k→i

(zkilki − Ski)

=
∑

j:i→j

Sij −
∑

k:k→i

(Ski − zkilki)

which is exactly the power balance constraint in the branch flow model. The voltage constraints can
also be transformed for i ∈ N as

V2
i ≤ [WG]ii ≤ V̄ 2

i ⇐⇒ vi ≤ vi ≤ v̄i ∀i ∈ N

where vi = V2
i and v̄i = V̄ 2

i . The rank-constraints can be reformulated for (i, j) ∈ E as

rank
(
WG (i, j)

)
= 1

⇔ [WG]jj = [WG]ij [WG]ji

[WG]ii

⇔ [WG]jj − [WG]ij − [WG]ji + [WG]ii =
(
[WG]ii − [WG]ij

) (
[WG]ii − [WG]ji

)
[WG]ii

⇔ lij = |Sij |2

vi

And finally, in the same way, the constraints regarding the positive semidefinitness of the G-partial
matrix WG can be reformulated into

WG

(
{i, j}

)
� 0 ⇐⇒ `ij ≥

|Sij |2

vi

In conclusion, by using the mapping function g, we saw that each constraint in one model can be refor-
mulated in terms of the variables of the other. Moreover, those constraints are exactly the constraints
considered in the other model, and hence proves the equivalence between the bus injection model and
the branch flow model as well as the equivalence between their second-order cone relaxations.
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1.3.2 Exactness of the SOCP relaxations for radial networks

Since the SOCP relaxations in the branch flow model and in the bus injection model are equivalent, the
conditions under which they are exact are also equivalent but expressed in terms of different variables.

Branch Flow Model We saw that whether the solution of the SOCP relaxation in the Branch
Flow Model (1.21) yields an optimal solution for BFM-OPF depends on two factors :

• Whether the solution of (1.21) satisfies the equality constraint (1.18).

• Whether the phase angles of V and I can be recovered from such a solution.

We already proved that in the special case of radial networks, the angle recovering condition always
holds and hence the exactness of the SOCP relaxation depends only on whether the solution satisfies
the equality constraint :

lij = |Sij |2

vi
(i, j) ∈ E

Bus Injection Model In the Bus Injection Model, The exactness of the SOCP relaxation for the
BIM-OPF depends on whether the G-partial matrix WG is rank-1 or not.

Up to date sufficient conditions that have been derived for the exactness of these SOCP relaxations
doesn’t hold in practice [ZT13]. For instance some conditions require some/all buses to be able to draw
infinite power, and the condition in [LZT12] requires a fixed voltage at every bus. A more elaborated
condition based on the branch flow model has been described in [GLTL12] to prove the exactness
of the SOCP relaxations. This condition can be checked a priori (prior solving the relaxation), and
generally holds for real networks, even with high penetration of distributed generation. Moreover,
they showed that the feasible set of OPF problem can be slightly modified to force the solution to be
exact. Surprisingly, with this modification, only feasible points that are "close" to the voltage upper
and lower bounds are eliminated.

1.4 Conclusion

This first chapter gave a short review of recent advances in convexification methods for solving the
Optimal power flow problem, which were developed in the last few years. These methods proved to
be very promising, since they can be computed very efficiently. However, there are still theoretical
issues (e.g. conditions for exactness).
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2 | The OPF Problem on Three-Phase
Distribution Networks

2.1 OPF Formulation

In this first section, we briefly introduce the OPF formulation for an unbalanced multiphase distribu-
tion network. The formulation is a generalisation of the Branch Flow Model described in section 1.2,
and is based on [GL14] and [PL15]. We choose to work with the branch flow model because of its
numerical stability. BIM-SDP is indeed ill-conditioned due to subtractions of voltages that are close
in value. Using alternating variables, BFM avoids these subtractions and is therefore numerically
more stable. Moreover, the variables in the BFM correspond to physical quantities such as the branch
power and current, which are more convenient for interpretation.

2.1.1 Notations

A distribution network is modelled as a directed graph G := (N , E), where N := {0, 1, . . . , n} repre-
sents the set of buses and E the set of lines connecting the buses. Since G represents a distribution
network, we expect him to be radial. We index the root of the tree by 0 and denote it as the substa-
tion node, which draws power from the transmission network to the distribution network for power
balance. Let N+ denote the set of non-substation buses.

Each bus i has a unique ancestor Ai and a set of children buses denoted by Ci. For convenience, we
adopt the following graph orientation : Every line points towards the root. Hence, each line i ∈ E
connects the bus i to its unique ancestor Ai. Since the line set E := {1, . . . , n} = N+, we will use N+

as the set of lines in the sequel. Denote by a, b, c the three phases of the network. Each bus i ∈ N has
a set of phases Φi ⊆ {a, b, c}. the set of phases of bus i is a subset of the phases of its ancestor and a
superset for the phases of its children j ∈ Ci, i.e. Φi ⊆ ΦAi , Φj ⊆ Φi ∀j ∈ Ci.

For each bus i ∈ N and each phase φ ∈ Φi, denote V φ
i the complex voltage and sφ

i = pφ
i + iqφ

i the com-
plex power injection (generation minus load). And denote the vectors Vi :=

(
V φ

i , ∀φ ∈ Φi

)
∈ C|Φi|×1,

and si :=
(
sφ

i , ∀φ ∈ Φi

)
∈ C|Φi|×1.

For each line i ∈ N+ connecting bus i and its ancestor Ai, the set of phases is ΦAi ∩ Φi = Φi (since
Φi ⊆ ΦAi). Denote for each phase φ ∈ Φi, Iφ

i ∈ C the complex branch current form bus i to its
ancestor Ai, and Ii :=

(
Iφ

i , ∀φ ∈ Φi

)
∈ C|Φi|×1. And let’s define the sending-end complex power

Si := ViI
∗
i ∈ C|Φi|×|Φi| from node i to its ancestor Ai.
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Finally, let’s define some variables useful for the formulation of the OPF problem in the branch flow
model : vi := ViV

∗
i ∈ C|Φi|×|Φi|, ∀i ∈ N , `i := IiI

∗
i ∈ C|Φi|×|Φi|, ∀i ∈ N+. A variable without a

subscript denotes the set of variables with appropriate components :

v := (vi, i ∈ N ) s := (si, i ∈ N )
` := (`i, i ∈ N+) S := (Si, i ∈ N+)

The notations are summarized on figure (2.1). Note that the impedance zij for each line (i, j) ∈ E
is a symmetric |Φi ∩ Φj | × |Φi ∩ Φj | complex matrix that consists of self-impedances on the diagonal
and mutual impedances (between phases) on the off-diagonals. Note that for balanced system, the
impedance matrix is diagonal. Hence the voltages and currents are independent form each each other,
i.e. they have no cross-terms and can be treated as three de-coupled single phase networks.

A

B

C

A

B

(j) (i)

Figure 2.1: Notations

2.1.2 Objective Function

The optimal power flow problem aims at minimizing a certain objective function. Typical objective
functions iclude generation cost or total power loss. Moreover the solution must satisfy power flow
equations and operational constraints. We assume there exists for each node i ∈ N and each phase
φ ∈ Φi, a real-valued function fφ

i

(
sφ

i

)
defined on R which represents the local objective of node i.

Then the total objective function is given by

f(s) :=
∑
i∈N

fi(si) :=
∑
i∈N

∑
φ∈Φi

fφ
i (sφ

i ). (2.1)

If we want to minimize the total line loss of real power, the objective function for each node i and for
each phase φ ∈ Φi is

fφ
i (sφ

i ) = pφ
i

If we want to minimize the generation cost, the objective function could be

fφ
i (sφ

i ) = αφ
i

2 (pφ
i )2 + βφ

i p
φ
i ,

where αφ
i , β

φ
i > 0 are fixed parameters that depend on the characteristic of the generator located at

node i.
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